17 The truth-functional conditional

We have seen (at some length!) how to evaluate arguments whose essential logical
materials are the three connectives ‘and’, ‘or’ and ‘not’. We now ask: can the techniques
that we have developed be smoothly extended to deal with arguments involving that
other quite fundamental propositional connective, ‘if’?

171 Some arguments involving conditionals

(a) Consider the following elementary arguments:

A If Jack bet on Eclipse, he lost his money. Jack did bet on Eclipse. So Jack
lost his money.

B If Jack bet on Eclipse, he lost his money. Jack did not lose his money. So
Jack did not bet on Eclipse.

C If Jack bet on Eclipse, he lost his money. So if Jack didn’t lose his money,
he didn’t bet on Eclipse.

D If Jack bet on Eclipse, then he lost his money. If Jack lost his money, then

he had to walk home. So if Jack bet on Eclipse, he had to walk home.

E Either Jack bet on Eclipse or on Pegasus. If Jack bet on Eclipse, he lost his
money. If Jack bet on Pegasus, he lost his money. So, Jack lost his money.

Each of these first five arguments involving conditionals is intuitively valid. Contrast the
next three arguments:

F If Jack bet on Eclipse, he lost his money. Jack lost his money. So Jack bet
on Eclipse.
G If Jack bet on Eclipse, he lost his money. Jack did not bet on Eclipse. So

Jack did not lose his money.

H If Jack bet on Eclipse, he lost his money. So if Jack did not bet on Eclipse,
he did not lose his money.

These are plainly fallacious arguments. Suppose foolish Jack lost his money by betting
not on Eclipse but on Pegasus, an equally hopeless horse. Then in each of these three
cases, the premisses of the argument can be true and conclusion false.

The validity or invalidity of the arguments A to H has nothing specifically to do
with Jack or betting, but is evidently due to the meaning of the conditional construction
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introduced by ‘if’. We would therefore like to have a general way of handling arguments
like these which rely on conditionals. Now, ‘if’ seems to be a binary connective like
‘and’ and ‘or’, at least in respect of combining two propositions to form a new one.
So the obvious question is: can we carry over our methods for evaluating arguments
involving those other binary connectives to deal with conditionals as well?

172 Four basic principles

As we will see in the next chapter, conditionals come in importantly different flavours;
but in this chapter let’s concentrate on simple cases like those in the previous section
(leaving it open for now what counts as ‘simple’).

We will regard if A, C and if A then C as stylistic variants, treating the ‘then’ here as no
more than helpful punctuation (perhaps the ‘then’ does more work in some conditionals;
but put any such cases aside). And we now introduce some standard terminology:

Given a conditional if A then C, we refer to the ‘if” clause A as the antecedent of
the conditional, and to the other clause C as the consequent.

The converse of if A then C is the conditional if C then A.

The contrapositive of if A then C is the conditional if not-C then not-A.

We will also use the same terminology when talking about the formal analogues of
vernacular conditionals.

Generalizing from the examples A and B, the following pair of basic principles of
conditional reasoning evidently hold good (at least for simple conditionals):

(MP) An inference step of the form A, if A then C, so C is valid. This mode of
inference is standardly referred to as modus ponens.

(MT) An inference step of the form not-C, if A then C, so not-A is valid. This
mode of inference is standardly referred to as modus tollens.

And here is a closely related principle — we can call it the falsehood condition:
(FC) A conditional if A then C must be false if in fact A is true and C is false.

That’s also obvious.

It is worth noting that both (FC) and (MT) are immediate consequences of (MP). Take
three propositions of the form (i) A, (ii) if A then C, (iii) not-C. These are inconsistent
since, by (MP), (i) and (ii) imply C, which contradicts (iii). Hence, if we keep (ii) and
(iii) we have to reject (i), which is the principle (MT). And if we keep (i) and (iii) we
have to reject (ii), which is the principle (FC).

Later, in §17.7, we will meet another core principle about conditionals: roughly, if
we can infer C from the temporary assumption A, then we can drop the assumption and
assert if A then C. But let’s put that idea on hold for the moment, and note instead another
basic fact about conditionals — namely, that they are not usually reversible:
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(NR) From a conditional premiss of the form if A then C, we can’t usually infer
the converse conditional if C then A.

No doubt, if I have won a Nobel prize, then I am clever. But it doesn’t follow that if T
am clever, then I have won a Nobel prize.

17.3  Introducing the truth-functional conditional

(a) In headline terms, our Chapter 15 technique for evaluating arguments involving
‘and’, ‘or’ and ‘not’ has two stages, (1) translation into a PL language and (2) assessing
the translated version for tautological validity by using a truth-table test.

Step (1) presupposes that the ordinary language connectives are close enough in their
core meanings to the corresponding connectives of PL for logically important features
of the original argument to get carried over by the translation.

Step (2) then depends on the fact that the PL connectives are truth-functional. That’s
needed to ensure that, given any valuation of the relevant propositional atoms, we can
work out whether it makes the premisses of the PL argument true and conclusion false.

Hence, if our truth-table technique is to be straightforwardly extended to cover argu-
ments involving the conditional, we need to be able to render conditional propositions
into a formal language using a suitable truth-functional connective, and to do this in a
way which preserves enough of the core meaning of the conditional.

(b) Tt is quite easy to see that there is only one truth-

. R Ot @ y | (@->y)
functional connective which satisfies inferential princi- T T ?
ples parallel to the four headlined principles (MP) to T F F
(NR) which apply to ordinary conditionals. Why so? F T 9

Suppose we add the symbol ‘—’ to a PL-style language F F 9

in order to represent a connective which is intended to

both truth-functional and conditional-like. The issue is how to fill in its truth-table. With
an eye on (FC), we have already completed the second line: the supposed truth-functional
conditional has to be false when it has a true antecedent and false consequent. So how
does the rest of the table go? We’ll give two arguments, slow and fast, for the same
completion.

(c) Taking it slowly, step by step, note that the first line on the truth-table has to be
completed with ‘T’. Otherwise (@ — y) would always be false when « is true. But of
course there can be true conditionals with true antecedents — else we’d never be able to
use (MP) with two true premisses (¢ — ) and « in order to prove that 7.

The last line also has to be completed with “T’. Other-

. ) @ vy | (@-=y
wise (@ — ) would always be false when vy is false. T T T
But of course there can be true conditionals with false T F F
consequents — else we’d never be able to use (MT) with F T 9
two true premisses (@ — y) and —y to prove that —a. F F T

Which just leaves one entry for the truth-table to be
decided. But if we put ‘F’ on the third line, then (@ — ) would have the same truth-table
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as (y — a), making our supposed conditional reversible, contrary to the requirement
that a conditional-like connective satisfies the analogue of (NR). Hence:

The only candidate for a conditional-like truth-function is the one defined by the
following truth-table:

| (@>)

T4 H|R

Y
T
F
T
F

==

(d) For a fast track argument, take the wff ‘(P A Q) — P)’. Assuming ‘—’ is con-
ditional-like, this should always be true (since necessarily, if ‘P’ and ‘Q’ are both true,
then ‘P’ in particular is true). But the values of the antecedent/consequent in this wif can
be any of T/T, or F/T, or F/F (depending on the values of ‘P’ and ‘Q’). And we’ve just
seen that the wif needs to evaluate as T in each case. So that forces the same completion
of the table for our conditional-like truth-function.

(e) The ancient Stoic logician Philo (4th century BC) claimed, in effect, that the
ordinary-language conditional has this truth-table. So the truth-functional connective
here is sometimes still referred to as the Philonian conditional. It was reintroduced
into modern logic by Frege in the nineteenth century, and then taken up by Bertrand
Russell who called it — for bad reasons that need not detain us — material implication.
The connective is now commonly known as the material conditional or simply as the
truth-functional conditional.

17.4  Ways in which ‘-’ is conditional-like

(a) Since PL languages can express all truth-functions, they can already express the
truth-functional conditional. But it is conventional to add a special symbol for this truth-
function, adjusting the syntactic and semantic rules to get richer languages we will call
PLC languages. The way to do this is exactly as you would expect, as you will see in
§17.6, so we do not need to pause over the details just yet. So let’s simply continue to use
the symbol ‘—’ for this truth-function, assuming it is now officially part of the formal
languages we are using.

How well does the material conditional behave as a formal counterpart to the ordinary-
language conditional? We make a start on discussing this troublesome issue by confirm-
ing that if we transcribe the various examples in §17.1 using ‘—’ for the conditional,
and run truth-table tests, we do get the right verdicts. (Remember from §15.6 that we
can extend the notion of tautological entailment and the use of truth-table tests beyond
basic PL languages, so long as we are still dealing with truth-functional connectives.)

(b) Start with the modus ponens inference in

A If Jack bet on Eclipse, he lost his money. Jack did bet on Eclipse. So Jack
lost his money.
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Rendered into a PLC language with a suitable glossary, this straightfowardly goes into
A’ P—-Q),P .. Q

And running a full truth-table test (not exactly hard!), we get

P Ql(P>q P]a
T T T TI T
T F F T | F
F T T FIT
F F T F |l F

There are no bad lines with true premisses and false conclusion. Therefore argument A’
is tautologically valid. Hence it is plain valid — as was the original version A.

We will skip the modus tollens argument B — it is a trivial exercise to confirm that
the obvious formal rendition is tautologically valid too. So let’s next look at

C If Jack bet on Eclipse, he lost his money. So if Jack didn’t lose his money,
he didn’t bet on Eclipse.

This can be rendered as
C’ P-Q) .. (-Q — =P).

Running another truth-table test, this time we get

P Q|| P->Q | (-Q- -P)
T T T T
T F F F
F T T T
F F T T

So again the inference in C’ is tautologically valid and hence valid.

And there’s more: that table shows that a material conditional not only tautologically
entails its contrapositive, but is tautologically equivalent to it. But this little result
still tracks the behaviour of ordinary-language conditionals, for the following is also
true:

Simple ordinary-language conditionals are equivalent to their contrapositives.

For example, ‘If Jack bet on Eclipse, he lost his money’ not only entails but is entailed
by ‘if Jack didn’t lose his money, he didn’t bet on Eclipse’.
Next example:

D If Jack bet on Eclipse, then Jack lost his money. If Jack lost his money,
then Jack had to walk home. So if Jack bet on Eclipse, Jack had to walk
home.

This goes into our PLC language as, say,

D’ (P->Q), (@Q—R) .. (P>R).
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Making a truth table using the now familiar shortcuts (evaluating the conclusion first,
and then the premisses in turn but only as needed), we very quickly get

(P—>Q) (@Q—R) (P—>R)
T

T F

F

T —4-4-444 T
93T 30
M7= TH =D

s

There are no bad lines, so the argument is tautologically valid, and therefore plain valid,
corresponding again to an intuitively valid vernacular argument.

The next example illustrates another common form of valid inference, a version of
proof by cases:

E Either Jack bet on Eclipse or on Pegasus. If Jack bet on Eclipse, he lost his
money. If Jack bet on Pegasus, he lost his money. So, Jack lost his money.

Using the material conditional, we can transcribe this as follows:
E’ (PvQ), (P—>R), (Q—R) .. R

You won’t be surprised to learn that this too it tautologically valid. Here’s a truth-table
to confirm that (again, we evaluate the conclusion first, ignore good lines, and then look
at the premisses in order, as needed).

P Q@ RJ| (Pv@) (P>R) (@—R) || R
T T T T
T T F T F F
T F T T
T F F T F F
FTT T
F TF T T F F
F F T T
F F F F F

(c) Somuch, then, for our first five example arguments A to E: they are both intuitively
valid and valid by the truth-table test when rendered into suitable PLC languages. Let’s
turn, then, to the argument

F If Jack bet on Eclipse, he lost his money. Jack lost his money. So Jack bet
on Eclipse.

As we noted before, the inference here of the form If A then C, C, so A is an instance of
a gross fallacy (it’s traditionally called affirming the consequent).
Take a translation of F using the material conditional, for instance

F’ P—-Q),Q .. P
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This inference is tautologically invalid. Just consider the following trivial truth-table:

P QP> ar
T T T T T
T F F F T
F T T T | F
F F T F | F

And now note that the bad line here evidently corresponds to a possible state of affairs
—i.e. Jack’s not betting on Eclipse yet losing his money all the same. The possibility
of that situation confirms that the original argument is plain invalid. So the tautological
invalidity of F’ directly reveals the invalidity of F.

Similarly, consider again:

G If Jack bet on Eclipse, he lost his money. Jack did not bet on Eclipse. So
Jack did not lose his money.

This inference-step of the form If A then C, not-A, so not-C commits another horri-
ble fallacy (traditionally called denying the antecedent). Transcribing into our formal
language using the material conditional and running a truth-table test confirms this.

Finally note example H. Rendered into a PLC language, this goes into the tautologically
invalid

H’ (P> Q) .. (=P > -Q).
Be very, very, careful to distinguish the horribly fallacious inference H” from the perfectly

valid inference from the same conditional to its contrapositive ‘(=Q — —P)’ as in C’!

(d) Examples A to H show that rendering some simple arguments involving condi-
tionals into a PLC language with its truth-functional conditional, and then using the
truth-table test, can yield just the right verdicts about the validity or invalidity of the
original arguments. And in the now familiar sort of way, we can generalize from those
examples. So we see that — as intended — the material conditional satisfies the principles
(MP), MT), (FC) and (NR) from §17.2 with ‘=’ now in place of ‘if’.

In interim summary, then:

The logical behaviour of ‘—’ in PLC languages is indeed parallel to that of the
vernacular ‘if’, in at least some cases, in some key respects.

17.5 ‘Only if’ (and the biconditional)

(a) Up to now, we have been discussing conditionals of the form
(1) If A then C.
(with or without the ‘then’). We can also write these ‘if” conditionals in the form
(1) C,ifA.

But we will take this form, without further ado, to be a mere stylistic variant.
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However, there is another basic kind of conditional which needs to be discussed,
namely ‘only if* conditionals. Consider the pair

(2) Aonlyif C.
(2’) OnmlyifC,A

Again, we can take these versions to be mere stylistic variants of each other.
So the interesting question concerns the relation between (1) if A then C and (2) A
only if C. But consider the following two-part argument:

Suppose we are given if A then C; this means that A’s truth implies C, so we will
only have A if C obtains as well —i.e. A only if C holds.

Conversely, suppose we are given A only if C; this means that if A is true then,
willynilly, we get C as well, i.e. if A then C.

It seems then that (1) and (2) imply each other. So, plausibly,
In many cases, propositions of the form if A then C and A only if C are equivalent.

To take a simple example, consider the following pair:

(3) If Einstein’s theory is right, space-time is curved.
(4) Einstein’s theory is right only if space-time is curved.

These two do indeed seem equivalent. (As so often, however, ordinary language has its
quirks: so can you think of examples where a proposition of the form if A then C seems
not to be straightforwardly equivalent to the corresponding A only if C?)

(b) Concentrate on cases where A only if C and if A then C do come to the same. Then
if we want to render them into a formal language with only truth-functional connectives,
we will have to translate them the same way, by using the material conditional. So in
particular, A only if C will be rendered by the corresponding (@ — 7y), where « is the
formal translation of A, and vy the translation of C.

Do be careful: translating ‘only if” conditionals gets beginners into a tangle surpris-
ingly often. But the basic rule is simple : first put an ‘only if” conditional into the form
A only if C and then replace the ‘only if” with the arrow ‘—’, to get the corresponding

(@ = ).
(c) For a simple example, consider the following argument:

I Jack came to the party only if Jo did. Also Jill only came to the party if Jo
did. Hence Jo came to the party if either Jack or Jill did.

(Note how the ‘only’ can get separated in ordinary English from its associated ‘if’.)

This argument is evidently valid. What about its correlate in a PLC language? Using
‘P’ to render the claim Jack came to the party, ‘Q’ for Jill came to the party, and ‘R’ for
Jo came to the party, we can transcribe the argument as follows:

r (P—>R), (@—>R) .. (PVQ)—>R).

A simple truth-table shows that this formal version is indeed tautologically valid:
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P Q R (P—>R) (@Q—-R) (PvQ)—>R)
T T T T
T T F F F
T F T T
T F F F F
F T T T
F T F T F F
F F T T
F F F T

(d) Finally, putting things together, what about the so-called biconditional, i.e. A if
and only if C?

Plainly, this two-way conditional says more than either of the separate one-way
conditionals A if C and A only if C. Which doesn’t stop careless authors sometimes
writing A if C when they really mean A if and only if C. And it doesn’t stop careless
readers understanding the one-way A if C as the two-way A if and only if C even when
only the one-way conditional is intended. So do take care!

The biconditional A if and only if C is the conjunction of A if C and A only if C. The
second conjunct we have just suggested should be translated into our formal language
by the relevant (@ — ). The first conjunct, equivalently If C, then A, is rendered by
(y — ). Hence the whole biconditional can be rendered by ((y — @) A (@ — 7¥)).

Now, that is a just a little cumbersome. So it is quite common to introduce another
new symbol ‘<’ for the two-way truth-functional conditional where, by definition,

(@ & ) is tautologically equivalent to ((y — @) A (@ — v)).

This is the so-called material biconditional; and a simple calculation shows that its
truth-table will be as displayed.

You really should know about this biconditional truth- a ¥ ‘ (@)
function and its most basic properties, and be able to T T T
recognize symbols for it when you see them elsewhere. T F F
However, to reduce clutter, we will not officially deploy 112 ;1; };

‘e’ in the main text of this book; instead, we will relegate
its use to a series of exploratory examples in various of the end-of-chapter Exercises.

(e) We should add, by the way, that as well as the formal symbol for the biconditional,
there is a widely used informal abbreviation that you should certainly know about:

Logicians and logically-inclined philosophers often write the ordinary-language

biconditional A if and only if C as simply A iff C.

17.6  PLC syntax and semantics, officially

The material conditional — like any truth-functional way of combining wffs — can be
expressed using the existing resources of a PL language. It is easily seen that both
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(ma V y) and =(a A —y) have the same truth-table as (@ — ). (Check this! We return
to these equivalences in §18.2.)

So, as we said before, we certainly do not need to add a new basic symbol for the
material conditional. However, there are trade-offs between various kinds of simplicity
here. On the one hand, if we add a symbol for the conditional, we thereby get nicer-
looking ‘translations’ (if we can call them that). On the other hand, in complicates our
story a little: e.g. in developing formal apparatus for regimenting proofs involving these
connectives, we will need additional inference rules to govern the new connective. On
balance, however, it is worth making the trade: so we will continue to consider languages
which add the new connective for the material conditional.

(a) Languages which have the truth-functional conditional built in alongside the other
connectives are our PLC languages. Here, then, is a summary of the official syntax of
such languages (compare §9.1):

The alphabet of a PLC language is that of a PL language with ‘—’ added.
The definition of atomic wffs remains the same as for PL languages.
The rules for forming PLC wffs are now

(W1) Any atomic wif counts as a wif.
(W2) If @ and B are wffs, so is (@ A B).
(W3) If @ and B are wfs, so is (@ V ).
(W4) If @ and B are wis, so is (@ — B).
(W5) If @ is a wif, so is —a.

(W6) Nothing else is a wff.

Our previous result about the uniqueness of parse trees for wifs, our previous definition
of the idea of a main connective, etc., will all carry over. We need not pause over such
matters.

(b) One comment, however, on the particular choice of symbolism for the material
conditional.

Most logicians now use ‘—’. But you will also often encounter the alternative old-
school symbol ‘D’, due to the nineteenth century mathematician Giuseppe Peano and
popularized by Bertrand Russell (and ‘=’ is an old alternative for the material bicon-
ditional). Indeed, there might perhaps be something to be said for keeping to the old
notation when the truth-functional material (bi)conditional is explicitly intended. But
we will follow modern notational practice.

(c) As for the semantics of PLC, it is a highly contentious question just how well the
material conditional captures the core meaning of even simple ordinary ‘if’s. We will
say more about this in the next chapter.

However, it is entirely straightforward to extend the story about valuations for PL
languages to cover PLC languages. We can now sum up how ‘—’ affects valuations by
adding the truth-table for this new connective to our previous panel:
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The truth tables for the PLC connectives:

« Bl@rp | @Vp | (@ p)

T T T T T a -
T F F T F T F
F T F T T F T
F F F F T

These tables get applied in evaluating molecular wffs exactly as before. Further, as we
have already seen in §17.4, the ideas of being a tautologically valid inference, etc., can
again be simply carried over to cover arguments in PLC languages.

177 ‘=’ versus ‘F'and “.".

(a) Recall that in §16.3 we drew a very sharp distinction between the object-language
inference marker °.".” and the metalinguistic sign ‘=’ for the entailment relation. We
now have another sign which we must also distinguish very clearly from both of these,
namely the object-language conditional ‘—’. Let’s finish this chapter by sorting things
out carefully.

As we stressed before,

(1) (PAQ) .. Q
is a mini-argument expressed in a PL or PLC language. Someone who asserts (1),
assuming that the atoms have been given some content, is asserting the premiss, asserting
the conclusion, and indicating that the second assertion is derived from the first one.
Compare, for example, the English Jack is a physicist and Jill is a logician. Hence Jill
is a logician.

By contrast

2) (PAQ) —» Q)

is a single proposition in a PLC language. Someone who asserts (2) asserts the whole
material conditional in that language (whose content will depend on the content we
have given the atoms); but they of course assert neither the antecedent ‘(P A Q)’ nor the
consequent ‘Q’. Compare the English If Jack is a physicist and Jill is a logician, then
Jill is a logician.

By contrast again

3) PAQ) FQ

is another single proposition, but this time it is a proposition in our extended English
metalanguage, and the wifs here are not used but mentioned. For (3) just abbreviates the
English

(3") ‘(P A Q) tautologically entails ‘Q’.
Compare ‘If Jack is a physicist and Jill is a logician’ logically entails ‘Jill is a logician’.

(b) There’s an unfortunate practice that — as we said — goes back to Russell of talking,
not of the ‘material conditional’, but of ‘material implication’, and reading something of
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the form ‘(@ — B)’ as a implies B. If we alsoread ‘a E B’ as « (tauto)logically implies
B, this makes it sound as if ‘(@ — )’ is the same sort of claim as ‘@ F 3, only the
first is a weaker version of the second. But, as we have just emphasized, these are in fact
claims of a quite different kind, one in the object language, one in the metalanguage.
Talk of ‘implication’ can blur the very important distinction. (Even worse, you will often
find e.g. ‘=’ being used in informal discussions to mean either ‘—’ or ‘F’, and you have
to guess from context which is intended. Never follow this bad practice!)

(c) However, we can link ‘logical implication’ in the sense of entailment to ‘material
implication’ in the sense of the material conditional by the following result:

Let @, 8 be wifs from a PLC language: then o F S if and only if F (@ — B).

In plain words: a PLC argument of the form « .".  is tautologically valid if and only if
(iff) the corresponding material conditional (¢ — ) is a PLC tautology. Why so?

By definition, for any wifs @ and B, @ F g iff there is no assignment of values
to the atoms which appear in the wifs which makes « true and S false, i.e. which
makes (@ — ) false. Hence a F g iff every assignment of values to the relevant
atoms makes (@ — f) true, i.e. E (@ — B).

(d) By similar reasoning, we can show that ay, @s,...,a,, 8 F vy if and only if
ay, @, ...,a, E (B — v), for any as. This is a formal analogue of the following
principle governing reasoning to a conditional conclusion:

Suppose, using some background premisses, we can argue from the additional
temporary assumption B to the conclusion C. Then, keeping those background
premisses fixed, we can infer from them that if B then C.

We will return to discuss this important rule of inference — so-called conditional proof
— in Chapter 21.

17.8  Summary

The only truth-functional connective that is a candidate for translating the condi-
tional of ordinary discourse is the so-called material conditional. If we represent
this connective by ‘—’, then (@ — vy) is false just when « is true and v is false, and
is true otherwise.

Since PL languages are expressively complete, we don’t need to add new a symbol
to such languages to express the material conditional. But it is convenient to do so.
The extended languages, with the symbol ‘—’ added in the obvious way, will be
termed PLC languages.

At least some ordinary-language arguments using conditionals can be rendered
into PLC languages using ‘—’ while preserving their intuitive validity or invalidity.
However, the exact relation between the general run of ordinary ‘if’s and ‘=’ is
contentious, as we will see.
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Many conditionals for the form A only if C are equivalent to the corresponding
conditional of the form if A then C; so both sorts of conditional can be rendered
into PLC languages using ‘—’ equally well (or equally badly!).

It is imperative to sharply distinguish ‘=’ from both °.".” and ‘F’.

Exercises 17

(To be added)



18 ‘Ifs and ‘—’s

We saw in the last chapter that the logical behaviour of ‘=’ in PLC languages is parallel
to that of the vernacular ‘if’, in at least some cases, in some key respects. But just how
close is the relation between ordinary conditionals and material conditionals?

18.1 Types of conditional

(a) We are discussing the biodynamics of kangaroos (as one does). You say:
(1) If kangaroos had no tails, they would topple over.

How do we decide whether you are right? By imagining a world very like our actual
world, with the same physical laws, and where kangaroos are built much the same except
for the lack of tails. We then work out whether the poor beasts in such a possible world
would be unbalanced and fall on their noses.

In short, we have to consider not the actual situation (where of course kangaroos
do have tails), but other possible ways things might have been. We have to engage in
counterfactual reasoning. So let’s call a conditional that invites this kind of evaluation
(i.e. evaluation by thinking not about the world as it is but about other ways things might
have been) a counterfactual conditional or a possible-world conditional.

(b) Here is a memorable pair of examples:

(2) If Oswald didn’t shoot Kennedy in Dallas, someone else did.
(3) If Oswald hadn’t shot Kennedy in Dallas, someone else would have.

Let’s assume that we agree that, in the actual world, Kennedy was definitely shot in
Dallas, and we also believe that Oswald did it, acting alone. What should we then think
about (2) and (3)?

Evidently, since in the actual world Kennedy was shot, someone must have done it.
Hence, if (to our surprise) not Oswald, someone else. So we’ll take (2) to be true.

But to decide whether (3) is true, we have to consider a non-actual possible world,
a world like this one except that Oswald missed. Keeping things as similar as we can
to the actual world (as we believe it to be), Oswald would still have been acting alone.
There would still be no back-up marksmen. In such a possible situation, Kennedy would
have left Dallas unscathed. Hence, we’ll take (3) to be false.

Since they take different truth-values, (2) and (3) must have different contents. Which
reinforces the intuition that a ‘would have’ possible-world conditional like (3) means
something different from a simple ‘did’ conditional like (2).
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(c) Now, the logic of possible-world conditionals is beyond the scope of this book, but
one thing is clear:

Possible-world conditionals are not truth-functional, and can not be adequately
translated by the material conditional.

For a material conditional has its actual truth-value fixed by the actual truth-values of
its constituent sentences. By contrast, the truth-value of a possible-world conditional
depends on what happens in other possible scenarios; so its truth-value can’t be fixed
just by the this-worldly values of the antecedent and consequent. Hence, entirely uncon-
troversially, the truth-functional rendition can at most be used for conditionals like (2)
and not for those like (1) or (3).

(d) What is controversial, though, is the range of conditionals that are appropriately
‘like (2)’ and which are not ‘like (1) or (3)’.

Conditionals grammatically like (1) and (3) are conventionally called subjunctive con-
ditionals, for supposedly they are couched in the subjunctive mood (though this is often
contested). By contrast, (2) —and all the conditionals in examples A to I at the beginning
of the last chapter — are conventionally called indicative conditionals, being framed in
the indicative mood. So does the traditional grammatical subjunctive/indicative distinc-
tion mark the distinction between the possible-world conditionals which are definitely
not truth-functional and the rest?

Arguably not, as we will see in the Appendix. But we don’t want to get bogged down
over contentious issues about the classification of conditionals any further here. From
now on, then, let’s leave aside possible-world conditionals (whichever exactly those are),
and concentrate on core cases of ‘indicative’ conditionals.

We will also set aside conditionals like ‘If you heat an iron bar, it expands’ or ‘If a
number is even and greater than two, then it is the sum of two primes’ (although these
are in the indicative mood). For such conditionals are in fact generalizations, equivalent
to e.g. ‘Take any iron bar, if you heat it, it expands’ or ‘Any number is such that, if it
is even and greater than two, then it is the sum of two primes’. So we narrow our focus
further, and consider just singular, i.e. ungeneralized, indicative conditionals. Let’s ask:
how well does the material conditional work in capturing the logical content of at least
these conditionals (‘simple’ ones, as we arm-wavingly called them)?

18.2 Simple conditionals as truth-functional: for

We saw how the singular indicative conditionals in arguments A to I from the last chapter
can be rendered into PLC using the truth-functional material conditional in a way that
preserves facts about validity and invalidity. Here then is a hopeful proposal:

(if =—>) ‘>’ does stand to some ‘if’s as ‘A’ stands to ‘and’ and ‘V’ stands to ‘or’;
the material conditional captures the core logical role of those ‘if’s which feature
in singular indicative conditionals.
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In this section, we briskly argue for this attractively easy position; then in the next
section we give an even brisker argument against it.

(@) How does an ordinary-language simple (i.e. singular indicative) conditional if A
then C relate to the propositions either not-A or C and it isn’t the case that both A and
not-C? Here is a pair of two-part arguments (think of them as ‘If/And’ and ‘If/Or’):

IA (i) The claim if A then C rules out having A true and C false. So if A then C
implies it isn’t the case that both A and not-C. (This is just the falsehood
condition (FC) which we met in §17.2.)

(ii) Conversely, suppose we are given that it isn’t the case that both A and
not-C. Then we can infer that if A is actually true we can’t have not-C as
well: in other words if A then C.

I0 (i) Suppose if A then C. So we either have not-A, or we have A and hence C.
So if A then C implies either not-A or C.

(ii) Conversely, suppose we are given either not-A or C. Then if not the first,
then the second. So we can infer if A then C.

The two-part argument IA implies that if A then C is equivalent to the truth-functional
it isn’t the case that both A and not-C. The two-part argument IO implies that if A then
C is equivalent to the truth-functional not-A or C. Therefore — using a, y to stand in
for formal translations of the English clauses A, C — we can render the truth-relevant
content of indicative conditionals if A then C by something of the form —(a@ A —y) and
equally by something of the form (=a V 7).

But, by trivial truth tables, both those are of course tautologically equivalent to
(@ — ), as we noted in passing at the beginning of §17.6. So we can indeed render the
core content of simple conditionals using ‘—"’.

(b) That argument for (if = —) is indeed brisk but it is entirely abstract. So let’s
amplify one of the steps by giving a realistic concrete illustration of what looks like an
equivalence between something of the form if A then C and the corresponding not-A or
C — or, what comes to the same, between if not-B then C and the corresponding B or C.

Suppose I vividly remember that Jack and Jill threw a party together last Easter, but
can’t recall whose birthday it was celebrating. On this basis, I believe

(1) Either Jack has a birthday in April or Jill does.

Now, you tell me — a bit hesitantly — that you think that maybe Jack has an October
birthday. I agree that you might, for all I know, be right; but I will still infer from (1) that

(2) If Jack was not born in April, then Jill was.

In the context, deriving (2) is surely perfectly acceptable. And note, it doesn’t commit
me for a moment to supposing that there is any causal or other intrinsic connection
between the facts about Jack and Jill’s birth months. I just think that at least one of the
propositions Jack was born in April and Jill was born in April happens to be true, and
thus if not the first, then the second.
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So (1) implies (2); and since (2) unproblematically implies (1), these two therefore are
equivalent in the sense of being interdeducible. Hence perfectly acceptable conditionals
like (2) can be no-more-than-material in what they commit us to about the world.

(c) Of course, when we assert an ordinary conditional, we often do think that there
is e.g. a causal connection between the matters mentioned in the antecedent and the
consequent (‘If ice was applied, the swelling went down’). But equally, when we assert a
disjunction, it is quite often because we think there is some mechanism ensuring that one
disjunct or the other is true (‘Either the e-mail was sent straight away or you will have
received a warning message that the e-mail is queued’). However, even if our ground for
asserting that disjunction is our belief in an appropriate mechanism, what we actually
say is true just so long as one or other disjunct holds. Likewise, our ground for asserting
a conditional may be e.g. a belief in some mechanism that ensures that if the antecedent
holds the consequent does too. But the ‘birthdays’ example shows that such a causal
mechanism doesn’t have to be in place for a conditional to be true.

18.3 Another case for equating ‘if and ‘-’

We should next note a very important family of cases where simple indicative ‘if’s
apparently do behave just like ‘—’s (at least as far as truth conditions are concerned).

Consider again Goldbach’s Conjecture, the famous — and still unproved — proposition
that

(1) If a number is even and greater than two, then it is the sum of two primes,

(where ‘number’ means ‘positive integer’). Now, this is of course not a straightforward
conditional of the form if A then C, with A and C whole propositions. Rather, it is a
generalized conditional, equivalent to

(2) Any number is such that, if it is even and greater than two, then it is the sum
of two primes

The truth of (1) therefore requires the truth of every particular instance of
(3) If nis even and greater than two, then 7 is the sum of two primes,

where ‘n’ gets replaced in turn by ‘1°, ‘2°, “3°, .. .. Now ask the key question what kind
of ‘if’ is involved in these particular instances, given that every single instance must be
true?

Take first the instances where the antecedent of the conditional is false. These are
instances where n is either 2 or is an odd number — and in these cases, the consequent
of the conditional may take either truth-value. But either way, the whole conditional has
to be true. Goldbach’s Conjecture can’t be falsified by what happens to odd numbers!
Hence, when the antecedent of an instance of (3) is false, for this instance to come out
true, we need the conditional to behave just like a material conditional: we need the
conditional to come out true irrespective of whether the consequent is true or false.

Take now the remaining instances of (3), where the antecedent of the conditional is
true. So we are dealing with a number n which is an even number great than two. Then,
we surely only need the consequent to be true, i.e. only need n to be the sum of two
primes, for the whole conditional to be true. And should the consequent be false, and n
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not be the sum of two primes, then the whole conditional will be false. In other words,
when the antecedent of an instance of (3) is true, the conditional in this instance again
behaves like a material conditional.

In short: it is natural to suppose that all the particular instances of (at least some)
generalized conditionals, like Goldbach’s Conjecture (1), do behave just like material
conditionals.

18.4 Simple conditionals as truth-functional: against

So far, then, so favourable for the proposal (if = —). Now for an argument that goes
flatly in the opposite direction.

In fact, there are a number of cases where treating ordinary indicative conditionals
as material conditionals leads to strongly counter-intuitive claims about validity. But we
will concentrate here on a central type of case (for more examples, see the Exercises).
Compare, then, the following three arguments — where, for vividness, we temporarily
borrow ‘—’ to express the material conditional truth-function in English:

(1) Bacon didn’t write Hamlet. So, either Bacon didn’t write Hamlet or he was a
bad dramatist.

(2) Bacon didn’t write Hamlet. So, (Bacon wrote Hamlet — Bacon was a bad
dramatist).

(3) Bacon didn’t write Hamlet. So, if Bacon wrote Hamlet, then he was a bad
dramatist.

(1) is trivially valid (as is any inference of the form not-A, so either not-A or C for
inclusive ‘or’). By definition, the conclusion of (2) is just another way of writing the
conclusion of (1), and hence (2) must be trivially valid too. By contrast, the inference in
(3) looks absurd. (3)’s conclusion, it will be said, is quite unacceptable (being the author
of Hamlet makes you a good dramatist, if anything does). So how can the apparently
absurd conclusion validly follow from the sensible premiss?

Generalizing, the inference pattern

(M) not-A, so not-A or C

is unproblematically and trivially reliable. So too, borrowing the arrow again, is the
inference

M’) not-A,s0 A — C.
On the other hand, many inferences of the type
(V) not-A, so if A then C.

strike us as quite unacceptable. For example, we surely can not correctly argue e.g. ‘1
won’t buy a lottery ticket; hence if I buy a ticket I will win’, or argue ‘Jill has not got
a broken leg. So if Jill has a broken leg, she will go skiing today’, or argue ‘It’s not
freezing cold. So if it’s freezing cold, it’s boiling hot.” And so on.

Yet (if = —) equates the content of the vernacular conditional if A then C in (V) with
the material conditional expressed in English by not-A or C in (M) — which implies that
the two inference patterns should after all be exactly on a par. So inferences of the type
(V) are as reliable as inferences of type (M). Which looks absurd.
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18.5 Three responses

On the one hand, §§18.2 and 18.3 offer strong-looking arguments in favour of the view
that simple conditionals are equivalent to material conditionals. On the other hand,
§18.4 exposes what seems to be an entirely unwelcome upshot of this view. We have a
problem! What to do?

We consider two initial responses which try to rescue the proposal (if = —) as it
stands; and then we offer a third response which suggests a friendly amendment to that
proposal.

(a) The first response simply asks us to think again and then to revise our initial
antipathy to (V):

Suppose I'm entirely confident that Bacon didn’t write Hamlet. Then, I'll happily
assert ‘If Bacon wrote Hamlet, then I’'m a Dutchman’, ‘If Bacon wrote Hamlet,
then pigs can fly’, ‘If Bacon wrote Hamlet, then Donald Trump wrote Pride and
Prejudice’. In the same spirit, we can also conclude ‘If Bacon wrote Hamlet, then
...~ for any other completion, however silly the result. Why not?

But the trouble with this retort is that ‘Dutchman’ conditionals — as we can call them —
strike us as jokey idiom. To say ‘If Bacon wrote Hamlet, then I’'m a Dutchman’ seems
too much like going through a pretence, playing at asserting a conditional as a dramatic
way of inviting you to draw the obvious modus tollens conclusion that Bacon didn’t
write Hamlet. Can we safely erect a theory of conditionals on the basis of exceptional
outliers like this?

(b) The second response we will consider is more conciliatory, allows that (V) not
only looks absurd at first sight but continues to do so on further reflection, but still tries
to reconcile this with (if = —):

It would, we can agree, be uncooperative of me to assert something equivalent
to A — C when I already know that A is simply false. For I could much more
informatively simply tell you, straight out, that nor-A. That’s why you can normally
expect me to have grounds for asserting A — C other than belief in the falsity of
the antecedent.

Similarly, assuming (if = —), for the equivalent ordinary-language proposition
if A then C. Even though it is really a material conditional, you’ll reasonably expect
me to have some grounds for asserting it other than belief in not-A. Because of
that strong expectation, inferences of the form (V) will strike us as peculiar, even
though strictly speaking correct.

But does this response do enough? Yes, it would usually be oddly unhelpful of me
to assert a bare disjunction when I believe e.g. that the first disjunct is definitely true.
So, yes, in many contexts, it would be odd simply to assert the disjunction not-A or C,
or equivalently assert A — C, when my reason is I think that nor-A. However, granted
all that, nothing strikes us as odd about the explicit inference (M) not-A; so not-A or C.
Likewise, there is nothing odd about the equivalent inference (M’) not-A; so A — C,
once we understand the symbol. That’s because in this case the default presumption that
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I might have grounds for A — C (i.e. not-A or C) other than belief in not-A is plainly
being cancelled: 1 am here quite frankly and explicitly offering not-A as my grounds!

In sum, there its nothing odd about (M’), even allowing for what can be expected from
co-operative conversationalists. And if the ordinary conditional is merely the material
conditional again, then there should equally be nothing odd about (V), still allowing
for what can be expected from co-operative conversationalists. Yet surely the cases are
different.

(c) Itstill seems, then, that an unqualified identification of ‘if’ and the material condi-
tional can’t explain the radical difference in plausibility between inferences (M) and (V).
So that strongly suggests that, even concentrating on simple cases, there is something
more to the meaning of ‘if” than a merely material conditional. But what? Here is a new
outline proposal:

Recall our brief discussion in §8.2(b) about the difference between A but B and A
and B. We suggested that these claims don’t differ in what it takes for them to be
true. Rather, the contrast between ‘but’ and the colourless ‘and’ is (very roughly)
that A but B is typically reserved for use when the speaker presumes that there is
some kind of contrast between the truth or the current relevance of A and of B.

Well, could it be similar for claims for the form if A then C and A — C? In other
words, perhaps these don’t differ in what it takes for them to be true. But still, there
is a difference between ‘if” and the colourless material conditional. In this case, if
A then C is reserved for use when the speaker is — as it were — promising to endorse
a modus ponens inference to the conclusion C should it turn out that A is true.

This seems a friendly amendment of the bald equation ( if = —). For it sticks to the core
idea that the assertions if A then C and A — C (i.e. not-A or C) come to same as far their
logic-relevant truth-conditions are concerned. That explains why the arguments IA and
10 in §18.2 look compelling. But we also get an explanation for why the inference from
not-A to if A then C typically seems quite unacceptable (even though truth-preserving).

How so? The plausible suggestion is that the use of ‘if” signals that the conditional it
expresses can be used in an inference to its consequent. Now, suppose that I start off by
believing not-A. Then, I will accept not-A or C or equivalently A — C. But of course, I
won'’t in this case be prepared to go on to infer C should I later come round to accepting
A. Instead, because I have changed my mind about the truth-value of A, I will now fake
back my earlier endorsement of A — C. In other words, if my only reason for accepting
A — Cis abelief in not-A, I won’t be prepared to go on to endorse using the conditional
in a modus ponens inference to the conclusion C. And that is why, according to our
suggestion about the role of ‘if’, I won’t be prepared to assert if A then C just on the
ground that nor-A.

Which is a neat story. But is it right?

18.6 Adopting the material conditional

We are going to have to leave that last question hanging. The debates in the vast literature
on conditionals are sophisticated and intriguing but frustratingly inconclusive. We have
only scratched the surface, and we certainly can’t review the ramifying arguments any
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further here (though for some additional introductory remarks, see the Appendix ‘More
on conditionals’).

However, for our purposes in this book, we can perhaps happily side-step all these
debates. Let’s finish this chapter by explaining how.

(a) Suppose we decide that the behaviour of everyday ‘if* is too complex to be ac-
commodated by a simple and obvious theory (that’s what the inconclusive philosophical
literature about conditionals might seem to show). Well, in this case, should we even be
trying to reflect those complexities in a formal language?

As we have seen, rendering arguments involving conditionals into a formal language
by using the material conditional can often get things right in straightforward cases —
i.e., get things right as far as the resulting verdicts about the validity or invalidity of the
argumen oncerned. So changing tack, perhaps we should be content with that. In other
words, perhaps we should instead regard the material conditional as a suitable partial
substitute for the vernacular conditional, one which is sufficiently conditional-like to
be happily adopted for some important formal purposes, while being elegantly clear,
perfectly understood, and very easy to work with.

This is in fact the line typically taken by mathematicians who want a useful and
easily-managed logic for regimenting their arguments. Indeed, this is exactly how the
truth-functional conditional was introduced by Frege, the founding father of modern
logic, in his Begriffsschrift. Frege’s aim was to provide a setting in which mathematical
reasoning, in particular, could be reconstructed entirely clearly and unambiguously —and
for him, such clarity requires departing significantly from what he calls “the peculiarities
of ordinary language”. So he introduces a formalized framework which then takes on a
life of its own. Choice of notation apart, the central parts of Frege’s formal apparatus
including his truth-functional conditional, together with his basic logical principles (bar
one), turn out to be exactly what mathematicians need.

That’s why modern mathematicians — who do widely use logical notation for clarifi-
catory purposes — often introduce the material conditional ‘—’ in text books as part of
their ‘mathematical English’, and then cheerfully say (in a Fregean spirit) that this tidy
notion is what they are going to mean by ‘if’. It serves them perfectly in regimenting
their theories, e.g. in giving their formal theories of arithmetic or set theory. As we saw,
it works well, in particular, in regimenting general claims like ‘if a number is even and
greater than two, then it is the sum of two primes’. And, as we will see in Chapter 21, the
inference rules that the material conditional obeys are just the rules that mathematicians
and others already use by default in reasoning with conditionals. So ‘—’ is sufficiently
conditional-like for their purposes, even if — contrary to the hopeful story in the last
section — it doesn’t capture all the truth-relevant content of ordinary ‘if’s.

This gives us, then, more than enough reason to continue exploring what happens
when we adopt ‘—’ as a ‘clean’ substitute for the conditional in our formal languages —
a substitute which serves many of the central purposes for which we want conditionals,
especially in mathematical contexts.

(b) However, a word of warning. If the material conditional perhaps does not always
capture all the content of vernacular conditionals, if we are thinking of it more as a
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substitute apt for use in some (but not all) contexts, then we’ll have to be correspondingly
cautious in using the sort of two-stage procedure for evaluating ordinary-language
arguments that we illustrated in §17.4.

The idea, recall, is that (1) we render a vernacular argument involving conditionals into
an appropriate PLC language, and then (2) we evaluate the corresponding PLC argument
by running the truth-table test. But we now have to ask ourselves, case-by-case, whether
the rendition of the vernacular argument into PLC using the truth-functional conditional
at stage (1) really hits off enough of the conditional content of the premisses and
conclusion for the verdict on the PLC version to carry back to a verdict on the original
argument. So our motto has to be: proceed with caution.

18.7 Summary

As we saw in the previous chapter, a good number of ordinary-language arguments
using conditionals can be rendered using ‘—’ while preserving their intuitive
validity/invalidity. However this at best works only for some singular ‘indica-
tive’ conditionals, and not for so-called ‘subjunctive/counterfactual’ (or ‘possible
world”) conditionals.

There are serious issues about how far, even in the best cases, ‘—’ can capture all
of the core meaning of everyday ‘if’. Identifying the two leads to oddities like the
acceptability of arguments of the form Not-A; so if A, then C.

However, the material conditional can still be recommended as a perfectly clear
substitute for the ordinary language conditional, with a perfectly determinate logic,
suitable for use by mathematicians and others.

Also see the Appendix ‘More on conditionals’.

Exercises 18

(To be added)



