
©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Notes

This page has Notes about the group of five new chapters – Chs 20 to 24 – on PL proofs.
There are more general Notes to Readers on the next page.

A version of natural deduction

• The second edition of my Introduction to Formal Logic will have chapters on natural
deduction in the main text (and supplementary chapters on truth trees, pretty much
as in the first edition, are available online).

• While a lot of people asked for natural deduction rather than trees, this majority
consensus of course hides further dissent about the sort of natural deduction system
to present. I’m o�ering a Fitch-style system. In a number of ways I’d prefer to do
things Gentzen-style (looking forward to more formal proof-theoretic work). But
I’m swayed, in part, by experience of what students find easier. You might disagree
about that: but I hope we can agree that once you have met Fitch-style proofs with
their elementary way of handling temporary assumptions and their discharge, it is
easy to move to using Gentzen proofs. I’ll also be o�ering a ‘conversion course’ as
an online supplement – or at least, that’s the plan!

• There will exercises added to the end of these chapters, and worked answers online.
I’m not one of those who fetishizes doing a lot of exercises, teaching proof strategies
etc. Basic understanding is what we should be aiming for, say I! Exercises will also
add some points of detail, like the equivalence of classical reductio and (DN).

• In an earlier version, the Fitch-style system I o�ered had a liberalized (_E) rule
of the kind recommended by Neil Tennant, and also treated the absurdity constant
following a minority line that thinks of it as more like an exclamation mark rather
than a w� in its own right. But I’ve been persuaded to revert to a more conservative
version.

• I have included a long-winded version of the Table of Contents at the outset, so you
can – if you want – see how these propositional natural deduction chapters fit into
the structure of the book.

• Since these are new chapters in this edition, all comments/corrections most gratefully
received!



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

i

General notes to readers

• What follows is an excerpt from a planned second edition of my Introduction to

Formal Logic (CUP, 2003). This is a textbook aimed at first-year philosophy students:
if all goes well, the second edition will appear in 2019 in the Cambridge Introductions

to Philosophy series. The initial Chapters 1 to 7 introduce some key concepts in a
relaxed way, and should be useful background whatever formal logic course you
then go on to take. Then, from Chapter 8, we make a start on propositional logic.
The Table of Contents will tell you what these chapters cover.

• Work still needs to be done on the exercise sets at the end of the chapters. There will
eventually be answers to the exercises on the web.

• At this stage, all kinds of comments (other than ones that mean, in e�ect, ‘You are
writing the wrong book!’) are most welcome. Obviously I want to hear about any
typos you spot. But in addition, it is very useful to hear e.g. about passages that you
found obscure or more di�cult than others, and passages you thought were possibly
misleading. And if you are not a native English-speaker, do note any words or turns
of phrase that you found puzzling.

• Spelling follows British English rather than North American English conventions.
So I write e.g. ‘fulfil’ rather than ‘fulfill’, ‘skilful’ rather than ‘skillful’, etc. I aim to
systematically use ‘ize’ endings where appropriate. (But still, if you think what I’ve
written is a typo, do say so – I’d rather you over-corrected than under-corrected!)

• One issue about punctuation. Suppose we have some introductory words followed by
some indented displayed material. Should the introductory words end with a colon
or not? My general line is this: if the introduction is a complete clause, I use a colon;
if the thought runs on straight into the indented material, I don’t.

• I use ‘they’/‘them’ as gender-neutral singular pronouns. (I don’t entirely like this but
prefer it to alternatives. Let me know of cases that really grate!)

• Unresolved references of the kind ‘??’ are forward-looking to chapters or sections
that aren’t included in the current chapters and will be resolved in due course.

• Comments and corrections please to ps218 at cam dot ac dot uk – if you do send
any, it could be very helpful if you mention the date of this draft.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

An Introduction to

Formal Logic
Second edition

Peter Smith

April 1, 2019



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

© Peter Smith 2018. Not for re-posting or re-circulation.

Comments and corrections please to ps218 at cam dot ac dot uk



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Contents

1 What is deductive logic? 1
1.1 What is an argument? 1
1.2 Kinds of evaluation 1
1.3 Deduction vs. induction 2
1.4 Just a few more examples 4
1.5 Generalizing 5
1.6 Summary 7
Exercises 1 7

2 Validity and soundness 9
2.1 Validity defined 9
2.2 Consistency, validity, and equivalence 11
2.3 Validity, truth, and the invalidity principle 12
2.4 Inferences and arguments 13
2.5 ‘Valid’ vs ‘true’ 15
2.6 What’s the use of deduction? 15
2.7 An illuminating circle? 17
2.8 Summary 17
Exercises 2 18

3 Forms of inference 19
3.1 More forms of inference 19
3.2 Four basic points about the use of schemas 21
3.3 Arguments can instantiate many patterns 23
3.4 Summary 25
Exercises 3 25

4 Proofs 26
4.1 Proofs: first examples 26
4.2 Fully annotated proofs 27
4.3 Glimpsing an ideal 29
4.4 Deductively cogent multi-step arguments 30
4.5 Indirect arguments 32
4.6 Summary 34
Exercises 4 35



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

ii Contents

5 The counterexample method 36
5.1 ‘But you might as well argue . . . ’ 36
5.2 The counterexample method, more carefully 37
5.3 A ‘quantifier shift’ fallacy 38
5.4 Summary 40
Exercises 5 40

6 Logical validity 41
6.1 Topic neutrality 41
6.2 Logical validity, at last 42
6.3 Logical necessity 44
6.4 The boundaries of logical validity? 44
6.5 Definitions of validity as rational reconstructions 45
6.6 Summary 47
Exercises 6 47

7 Propositions and forms 48
7.1 Types vs tokens 48
7.2 Sense vs tone 48
7.3 Are propositions sentences? 49
7.4 Are propositions truth-relevant contents? 50
7.5 Why we can be indecisive 51
7.6 Forms of inference again 52
7.7 Summary 53

Interlude: From informal to formal logic 54

8 Three connectives 56
8.1 Two simple arguments 56
8.2 ‘And’ 57
8.3 ‘Or’ 58
8.4 ‘Not’ 60
8.5 Scope 60
8.6 Formalization 61
8.7 The design brief for PL languages 62
8.8 One PL language 64
8.9 Summary 65
Exercises 8 66

9 PL syntax 67
9.1 Syntactic rules for PL languages 67
9.2 Constructional histories, parse trees 69
9.3 W�s have unique parse trees! 71
9.4 Main connectives, subformulas, scope 72
9.5 Bracketing styles 74
9.6 Summary 74
Exercises 9 75



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Contents iii

10 PL semantics 76
10.1 Interpreting w�s 76
10.2 Languages and translation 78
10.3 Atomic w�s are true or false 78
10.4 Truth values 79
10.5 Truth tables for the connectives 80
10.6 Evaluating molecular w�s: two examples 81
10.7 Uniqueness and bivalence 83
10.8 Short working 84
10.9 Summary 86
Exercises 10 86

11 ‘P’s, ‘Q’s, ‘↵’s, ‘�’s – and form again 88
11.1 Styles of variable: object languages and metalanguages 88
11.2 Basic quotation conventions 89
11.3 To Quine-quote or not to Quine-quote 91
11.4 Why Greek-letter variables? 92
11.5 The idea of form, again 93
11.6 Summary 95
Exercises 11 95

12 Truth functions 96
12.1 Truth-functional vs other connectives 96
12.2 Functions and truth functions 97
12.3 Truth tables for w�s 98
12.4 ‘Possible valuations’ 102
12.5 Summary 104
Exercises 12 104

13 Expressive adequacy 105
13.1 Exclusive disjunction 105
13.2 Another example: expressing the ‘dollar’ truth function 106
13.3 Expressive adequacy defined 107
13.4 Some more adequacy results 108
13.5 Summary 109
Exercises 13 110

14 Tautologies 111
14.1 Tautologies and contradictions 111
14.2 Generalizing examples of tautologies 113
14.3 Tautologies, necessity, and form 114
14.4 Tautologies as analytically true 116
14.5 Summary 116
Exercises 14 117

15 Tautological entailment 118
15.1 Three introductory examples 118



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

iv Contents

15.2 Tautological entailment defined 120
15.3 Tautological validity and logical validity 121
15.4 Brute-force truth-table testing 122
15.5 More examples 123
15.6 Extending the notion of tautological entailment 125
15.7 Summary 126
Exercises 15 127

16 More about tautological entailment 128
16.1 Can there be a more e�cient test? 128
16.2 Truth-table testing and the counterexample method 129
16.3 ‘✏’ and ‘6’ 130
16.4 Generalizing examples of tautological entailment 130
16.5 Tautological entailment and form 132
16.6 Tautological equivalence as two-way entailment 132
16.7 Summary 134
Exercises 16 134

17 Explosion and absurdity 135
17.1 Explosion! 135
17.2 Two more logical constants 136
17.3 ‘?’ as an absurdity symbol 136
17.4 Adding ‘?’ to PL languages 137
17.5 Summary 137
Exercises 17 137

18 The truth-functional conditional 138
18.1 Some arguments involving conditionals 138
18.2 Four basic principles 139
18.3 Introducing the truth-functional conditional 140
18.4 Ways in which ‘!’ is conditional-like 141
18.5 ‘Only if’ (and the biconditional) 144
18.6 Extended PL syntax and semantics, o�cially 146
18.7 ‘!’ versus ‘✏’ and ‘6’ 148
18.8 Summary 149
Exercises 18 150

19 ‘If’s and ‘!’s 151
19.1 Types of conditional 151
19.2 Simple conditionals as truth-functional: for 152
19.3 Another kind of case where ‘if’ is truth-functional 154
19.4 Simple conditionals as truth-functional: against 155
19.5 Three responses 155
19.6 Adopting the material conditional 157
19.7 Summary 159
Exercises 19 159



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Contents v

Interlude: Why natural deduction? 160

20 PL proofs: conjunction and negation 162
20.1 Rules for conjunction 162
20.2 Rules for negation 164
20.3 A double negation rule 167
20.4 Thinking strategically 169
20.5 ‘Availability’ 171
20.6 Explosion and absurdity again 172
20.7 Summary 175
Exercises 20 176

21 PL proofs: disjunction 177
21.1 The iteration rule 177
21.2 Introducing and eliminating disjunctions 178
21.3 Two more proofs 183
21.4 Disjunctive syllogisms 184
21.5 Summary 188
Exercises 21 188

22 PL proofs: conditionals 189
22.1 Rules for the conditional 189
22.2 More proofs with conditionals 192
22.3 The material conditional again 195
22.4 Summary 195
Exercises 22 196

23 PL proofs: theorems 197
23.1 Theorems 197
23.2 Derived rules 199
23.3 Excluded middle and double negation 200
23.4 Summary 201
Exercises 23 201

24 PL proofs: metatheory 202
24.1 Metatheory 202
24.2 Putting everything together 203
24.3 Vacuous discharge 205
24.4 Generalizing proofs 207
24.5 ‘✏’ and ‘`’ 208
24.6 Soundness and completeness 209
24.7 Excluded middle again 211
24.8 Summary 213
Exercises 24 213

Interlude: QL languages 214

25 Names and predicates 214



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

vi Contents

25.1 Names 214
25.2 Predicates 215
25.3 Predicates: sense vs extension 217
25.4 Names: sense vs reference 219
25.5 Reference, extension, and truth 220
25.6 Summary 221

26 Quantifiers in ordinary language 222
26.1 Which quantifiers? 222
26.2 Every/any/all/each 223
26.3 Quantifiers and scope 224
26.4 Fixing domains 228
26.5 Summary 229

27 Quantifier-variable notation 230
27.1 Quantifier prefixes and ‘variables’ as pronouns 230
27.2 Restricting quantifiers 232
27.3 Domains 233
27.4 Quantifier symbols 234
27.5 Loglish 236
27.6 A variant notation 237
27.7 Summary 238

28 QL languages introduced 240
28.1 Names, predicates and atomic w�s in QL 240
28.2 One example: introducing QL1 242
28.3 Adding the connectives 242
28.4 Adding the quantifiers: syntax 243
28.5 Interpreting quantified w�s 246
28.6 Quantifier equivalences 248
28.7 Summary 249
Exercises 28 250

29 Translations 251
29.1 Restricted quantifiers revisited 251
29.2 Existential import 253
29.3 ‘No’ 254
29.4 Translating via Loglish 255
29.5 Translations into QL2 255
29.6 More translations into QL2 258
29.7 Translations from QL2 261
29.8 Moving quantifiers 262
29.9 Summary 263
Exercises 29 264

Interlude: ‘Translating’ and ‘logical form’ 265



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Interlude: Why natural deduction?

(a) What have we done since the last Interlude?

We explained the essential ‘divide and rule’ approach to logic. The general idea is
that we sidestep having to deal with the quirks of ordinary language by rendering
vernacular arguments into well-behaved artificial languages, and then we investigate
the validity or otherwise of the resulting formalized arguments.
So we set o� first to explore formalized arguments involving ‘and’, ‘or’ and ‘not’
as their essential logical materials.
We defined the syntax of our PL languages (which initially just have formal versions
of these three connectives). We learnt how w�s of such languages are built up (in
ways that can be displayed using parse trees). We also defined the notion of scope,
the notion of a main connective, and related ideas.
Next, semantics. We discussed the interpretation of PL languages: we assign truth-
relevant contents (senses) to atoms, and read the connectives as expressing bare
conjunction, inclusive disjunction, and negation – understanding these in a way
that makes the connectives truth-functional.
Given the truth-functional interpretation of the connectives, it follows that the
truth-value of a w� is determined by a valuation of its atoms.
We showed that – using just the three built-in connectives – we can define any

truth-functional connective (we can construct w�s with any desired truth-table).

This got us to the position where we could take the pivotal step, and define the notions
of a tautology and of tautological validity:

A tautology is a w� true on every combinatorially possible valuation of its atoms,
while a contradiction is false on every such valuation.
A PL argument is tautologically valid if every combinatorially possible valuation
of the relevant atoms which makes the premisses true makes the conclusion true.
We discussed the relation between this notion of validity and the informal notion
of logical validity. We argued that the notion of tautological validity gives us a
cleanly defined rational reconstruction for the notion of logical validity as applied
to inferences relying on truth-functional connectives.
We introduced one way of establishing tautological validity, namely by a brute-
force truth-table test. We can in this way decide, quite mechanically, which PL

inferences are tautologically valid.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

Why natural deduction? 161

Finally – after adding the absurdity constant which will be useful later – we considered
the prospects for dealing with arguments involving ‘if’ in the same way:

We met the so-called material conditional, which is the only possible conditional-
like truth-function, and we added a special symbol for this to the formal apparatus
of PL languages.
However, perhaps the material conditional is at best a surrogate for the ‘if’ in just
some indicative conditionals; there remains a serious issue about how far it captures
all the meaning of ‘if’ even in these cases.

(b) In Chapters 4 and 5, we talked about two informal ways of assessing inferences
– namely, showing validity by giving a step-by-step proof, and showing invalidity by
finding a counterexample. We have seen that a truth-table test is in e�ect a systematic
search through all the possibilities for a counterexample to the validity of a PL inference
(see §16.2). Our next task is to pick up the idea of step-by-step proofs, and to consider
how to construct such proofs of validity inside our formalized PL languages.

Take, for example, the argument

(P ^ (Q ^ R)), (S ^ P
0) 6 (P0 ^ Q).

We can run up a thirty-two line truth table to validate this little argument (trying to find
a bad line and failing). But it is surely much more natural simply to reason as follows.

(i) Given a pair of propositions, we can derive their conjunction, and
(ii) given a conjunction, we can derive each conjunct.

Hence, deploying these two rules of inference for conjunctions, we can use (ii) to infer
‘(Q ^ R)’ and hence ‘Q’ from the first premiss of our argument above and then also use
(ii) to infer ‘P0’ from the second premiss. And then we can use (i) to put these interim
consequences together to get the desired conclusion.

We can next introduce rules of inference similarly governing negations, disjunctions
and conditionals, and then explain how to put together natural-looking step-by-step PL

deductions using these rules. And we can do all this while aiming to follow reasonably
closely the modes of argument that we already find in everyday informal reasoning. In a
phrase, we can aim to develop a natural deduction proof system for propositional logic.
As we will see, this is fairly easy to do (the devil is in the details).

So this gives us another approach to showing the validity of a correct PL inference –
namely, derive its conclusion from its premisses by a step-by-step deduction.

Is it overkill to explore a proof system as well as the truth-table approach to propo-
sitional logic? Well, natural deduction proofs for PL inferences are intrinsically worth
knowing about. But the crucial point for us will be this. Unlike the truth-table approach,
natural deduction methods can be extended from propositional logic in a smooth way

to validate inferences with quantifiers. And that’s our ultimate target, to be able to deal
with formal QL – quantificational logic – inferences turning on ‘all’, ‘some’, ‘no’, etc.

As with many other logical ideas, however, the general conception of a formal proof
system is much more easily grasped if we meet it first in the tame context of propositional
logic. So that is why we will be spending more time on PL arguments over the next few
chapters before finally moving on.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

20 PL proofs: conjunction and negation

Outside the logic classroom, when we want to convince ourselves that a supposedly valid
inference really is valid, how do we proceed? As we just noted in the Interlude, we often
try to find an informal proof. In other words, we aim to derive the desired conclusion by
a multi-step argument, chaining together obviously truth-preserving inferences starting
from the given premisses.When working in a formal language we will similarly want to
give formal proofs to show inferences are valid. So we now begin to develop a framework
for constructing proofs in PL languages. We start with multi-step arguments involving
conjunctions and negations.

One important point before we begin. We will be laying out proofs in the vertical
column-shifting style which we met informally in Chapter 4. We won’t complicate
matters now by considering other options (e.g. tree-shaped proofs like A

T in §9.2,
discussed in an Appendix). But we should stress that there is no single ‘right’ way of
laying out natural deduction proofs.

20.1 Rules for conjunction

(a) Let’s start by o�cially adopting the following rules for arguing to and from w�s
which have ‘^’ as their main connective.

^-Introduction: Given ↵ and �, we can infer (↵ ^ �).
^-Elimination: Given (↵ ^ �), we can infer ↵. Equally, we can infer �.

Here, ↵ and � are of course arbitrary PL w�s.
Intuitively, we can infer a bare conjunction given both its conjuncts; and we can infer

each conjunct from a conjunction. So our two inference rules, just suggested in the
Interlude, are certainly faithful to the intended meaning of the connective ‘^’.

Our names for the rules are standard and reasonably self-explanatory. Two particular
comments on the first rule:

(i) The inputs ↵ and � used when inferring (↵ ^ �) don’t have to be distinct – so
we are allowed e.g. to appeal to a premiss ‘P’ twice over to derive ‘(P ^ P)’.

(ii) The order in which ↵ and � appear earlier in a proof doesn’t matter: we can
infer (↵ ^ �) either way.

With these points understood, we can display our rules diagramatically and give them
brief labels like this:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.1 Rules for conjunction 163

Rules for conjunction

(^I)

↵
...
�
...

(↵^ �)

(^E)
(↵^ �)
...
↵

(↵^ �)
...
�

Note how the two rules for ‘^’ fit together beautifully. In an obvious sense, the elimination
rule can be used to reverse an application of the introduction rule – applying (^E) twice
after invoking (^I) takes us back to where we started.

(b) Let’s have a first simple example of these o�cial rules at work. So consider the
argument

A Popper is a philosopher, and so are Quine and Russell. Sellars is a philoso-
pher and Putnam is one too. Hence both Putnam and Quine are philoso-
phers.

Regimenting this into an appropriate PL language (where ‘P’ means Popper is a philo-

sopher, ‘Q’ means Quine is a philosopher, and so on), A can be rendered as

A
0 (P ^ (Q ^ R)), (S ^ P

0) 6 (P0 ^ Q).

We met this argument a few pages ago in the Interlude. So here again is the truth-
preserving derivation of the conclusion from the premisses that we informally sketched
there, now presented in what will be our o�cial style:

(1) (P ^ (Q ^ R)) (Prem)
(2) (S ^ P

0) (Prem)
(3) (Q ^ R) (^E 1)
(4) Q (^E 3)
(5) P

0 (^E 2)
(6) (P0 ^ Q) (^I 5,4)

This illustrates two basic stylistic choices:
(i) We have used a vertical line against which to align our column of reasoning.
(ii) And we have used a horizontal bar to draw a line under the premisses at the

beginning of our argument.
Both these visual aids are optional but conventional.

We have also introduced on the right a rather laconic style of annotation, again
optional, and again pretty standard in form. ‘Prem’ doesn’t need explanation. At later
lines which result from the application of a rule of inference, we give the label for the
relevant rule, and then the line number(s) of its input(s). In the case of an application
of (^I) resulting in a w� of the form (↵ ^ �), we give the line numbers of the relevant
preceding w�s ↵ and � in that order.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

164 PL proofs: conjunction and negation

Note that we could have derived the w�s at lines (4) and (5) in the opposite order,
and still gone on to derive (6). So even the shortest proof from premisses to conclusion
need not be unique.

(c) That was easy! This next example is even easier. The inference
B (P ^ Q) 6 (Q ^ P)

is trivially valid, and has a correspondingly trivial proof:

(1) (P ^ Q) (Prem)
(2) P (^E 1)
(3) Q (^E 1)
(4) (Q ^ P) (^I 3, 2)

And the pattern of proof here can be generalized. Just replace each ‘P’ by ↵, each ‘Q’
by �, and we get a derivation from the w� (↵ ^ �) – whether as an initial premiss or
midway through a longer argument – to the corresponding w� (� ^ ↵).

(d) We have so far adopted just two basic rules for arguing with conjunctions, namely
(^I) and (^E). But we could, with equal justification, have added other basic rules, for
example the rule (^C) reflecting that conjunction ‘commutes’:
^-Commutes: From (↵ ^ �), we can infer (� ^ ↵).

However, we now know that this third rule would be redundant. Any application of (^C)
could be replaced by a little three-step dance involving (^I) and (^E) instead.

Other intuitively reliable additional rules for ‘^’ turn out to be similarly redundant. Of
course, there would be nothing wrong about adding (^C) or other unnecessary but truth-
preserving rules to our deduction system. Economy of basic rules is a major virtue for a
proof system, but it isn’t the only virtue; as we will see later, there can be countervailing
reasons for adding a strictly-speaking redundant rule. However, in this case, there aren’t
any strong reasons for adding any other basic ^-rules, perfectly natural and reliable
though they might be. So we won’t.

20.2 Rules for negation

(a) We next introduce rules governing negation – and things now do get a little more
interesting! So consider the following informal argument:

C Popper didn’t write a logic book. Hence it isn’t the case that Popper and
Quine each wrote a logic book.

This is valid. Why? Here is a natural line of reasoning, spelt out in painful detail:
Our premiss is that Popper didn’t write a logic book. Now temporarily suppose that
Popper and Quine did each write a logic book. Then, trivially, we’ll be committed
to saying Popper in particular did write a logic book. But that directly contradicts
our premiss. Hence our temporary supposition leads to absurdity and has to be
rejected. So it isn’t the case that Popper and Quine each wrote a logic book.

Here we are, of course, deploying a reductio ad absurdum (RAA) inference of the kind



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.2 Rules for negation 165

we first met back in §4.5. In other words, we are making a temporary assumption or
supposition for the sake of argument. We find that the temporary supposition leads
to absurdity, given our background premiss. So we drop or discharge that temporary
supposition, and conclude that it has to be false after all.

(b) Let’s now transpose all this into a formal mode. Argument C can be rendered into
a PL language with the obvious glossary, giving us

C
0 ¬P 6 ¬(P ^ Q).

And now we simply replicate the natural line of reasoning we used a moment ago:

(1) ¬P (Prem)
(2) (P ^ Q) (supposed for the sake of argument)
(3) P (^E 2)
(4) ? (absurd! – 3 and 1 are contradictory)
(5) ¬(P ^ Q) (by RAA, using the subproof 2–4)

It should be pretty clear what is going on here. But let’s spell things out carefully,
beginning with a general point:

(i) In a proof, we can at any step make a new temporary supposition for the sake
of argument, so long as we clearly signal what we are doing. And if this isn’t
to become a permanent new premiss, we will later need to drop or discharge
that supposition. When we drop a supposition, we can of course no longer use
it or its implications as inputs to further inferences.

Next, two comments about our stylistic choices in displaying our formal proof:
(ii) The overall layout of the proof follows the convention already informally in-

troduced in §4.5. So when we make a new supposition or additional temporary
assumption for the sake of argument, we mark this by indenting the line of

argument one column to the right. We thereby start a derivation-within-a-
derivation, i.e. a subproof.

When we decide to finish or close o� a subproof, we shift the line of argu-

ment back one column to the left. At this point, we say the supposition at the
head of the subproof has been discharged.

This elegant column-shifting layout for handling temporary suppositions is
primarily due to Frederic Fitch in his Symbolic Logic (1952).

(iii) We have decorated the proof by using another vertical line to mark the new
column for our indented subproof. This line starts against our new supposition,
and continues for as long as the supposition remains in play. (Compare: the
initial premiss is in play throughout the argument, and so the vertical line
starting against that premiss continues for the length of the whole proof.) We
have also used another horizontal bar to draw a line under the temporary
supposition at the beginning of the indented subproof.

Again, in using these standard visual aids, we are following Fitch.
Now a comment on the role of ‘?’:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

166 PL proofs: conjunction and negation

(iv) In our proof, we reach a blatant contradiction, with a pair of w�s of the form
↵ and ¬↵ both in play. So we have reached an absurdity. We highlight this
by inferring ‘?’, using the absurdity constant which we added to the resources
of PL languages in §§17.4 and 18.6, and which we have already noted is
tautologically entailed by any contradictory pair.

The (RAA) rule can now be characterized like this:
(v) Suppose (i) we have a subproof which begins with a w� ↵, temporarily

supposed true for the sake of argument; (ii) in the subproof we infer ‘?’; and
then (iii) we terminate the subproof by moving back one column to the left.
We have then discharged the temporary supposition ↵, and we can use (RAA)
to appeal to this finished subproof to infer ¬↵.

(c) For another example, one requiring a slightly longer proof, consider the argument
D Popper is from Vienna. It isn’t the case that both Popper and Quine are

Viennese. The same goes for Popper and Russell: they aren’t both from
Vienna. Hence both Quine and Russell are not Viennese.

This is valid. For suppose Quine were from Vienna – then both Popper and Quine would
be Viennese, contradicting the second premiss. So Quine isn’t Viennese. Similarly
suppose Russell were from Vienna – then both Popper and Russell would be Viennese,
contradicting the third premiss. So Russell isn’t Viennese either. Hence, as we want,
both Quine and Russell are not Viennese.

With the obvious glossary for ‘P’, ‘Q’ and ‘R’, we can transcribe our informal argument
into a PL language as follows:

D
0

P, ¬(P ^ Q), ¬(P ^ R) 6 (¬Q ^ ¬R).
And we can then mirror our easy informal proof as a formal PL proof:

(1) P (Prem)
(2) ¬(P ^ Q) (Prem)
(3) ¬(P ^ R) (Prem)
(4) Q (Supp)
(5) (P ^ Q) (^I 1, 4)
(6) ? (Abs 5, 2)
(7) ¬Q (RAA 4–6)
(8) R (Supp)
(9) (P ^ R) (^I 1, 9)

(10) ? (Abs 9, 3)
(11) ¬R (RAA 8–10)
(12) (¬Q ^ ¬R) (^ 7, 11)

We have added to our repertoire of laconic annotations in a straightforward way. ‘Supp’
marks, unsurprisingly, a temporary supposition starting a subproof. A reductio inference
is marked by ‘RAA’ together with the line numbers of the beginning and end of the
relevant subproof. And ‘Abs’ marks that we are declaring an absurdity on the basis of a



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.3 A double negation rule 167

blatant contradiction, and we give the line numbers of the relevant contradictory w�s ↵
and ¬↵, in that order.

Two important comments about the significance of the layout here.
(i) Note that we can infer ‘(P ^ Q)’ at line (5) even though we have shifted

columns after the initial premiss ‘P’. When we moved a column to the right,
we added the new temporary supposition ‘Q’; but we remain committed to
the three original premisses, so we can still invoke one of them.

(ii) It is when moving columns in the other direction that we have to be really
careful; for then we are dropping the commitment to an additional temporary
assumption and its implications. For example, our supposition ‘Q’ made at
line (4) is discharged after line (6) – and then it is no longer in play, no longer
available to be used as an input to further inferences. But later at line (8)
another supposition is made and becomes newly available to be used, e.g. in
the inference which gets us to line (9).

For more about how w�s can go in and out of play in a proof as temporary suppositions
are made and discharged, see §20.5.

(d) Let’s summarize the negation rules (RAA) and (Abs) which we have met so far.

Reductio ad absurdum: Given a finished subproof starting with the temporary
supposition ↵ and concluding ‘?’, we can infer ¬↵.
The absurdity rule: Given w�s ↵ and ¬↵, we can infer ‘?’.

(RAA) is our basic rule for arguing to a conclusion with ‘¬’ as its main connective. So
we could equally well have called it our ¬-introduction rule. Similarly, (Abs) is our rule
for arguing from an input with ‘¬’ as its main connective. In this sense it can be said to
be our ¬-elimination rule.

And note that these two rules, like the introduction and elimination rules for ‘^’, also
fit together beautifully. (Abs) reverses (RAA) in the sense that (Abs) recovers from ¬↵
the essential input used in arguing to ¬↵ by (RAA) – because (Abs) in e�ect tells us
that if we have ¬↵, then from ↵ we can derive absurdity.

20.3 A double negation rule

Our first two ¬-rules are intuitively faithful to our understanding of negation. Do we
need any other rules?

Given our classical understanding of negation as truth-value-flipping, a w� and
its double negation are equivalent, and so we will want to be able to establish this
equivalence in our PL proof system. Two questions arise: (a) is there a proof of ‘¬¬P’
from ‘P’ using our current rules? (b) Is there a proof of ‘P’ from ‘¬¬P’?

(a) The first of these questions is quickly answered.
As a generally useful rule-of-thumb, if we want to prove ¬↵, the thing to do is to

suppose ↵ and then aim to expose a contradiction so we can use (RAA). So let’s do that
here, with ‘¬P’ for ↵:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

168 PL proofs: conjunction and negation

(1) P (Prem)
(2) ¬P (Supp)
(3) ? (Abs 1,2)
(4) ¬¬P (RAA 2–3)

Which couldn’t have been easier!
And again the proof generalizes: we can always infer a w� of the form ¬¬↵ from

the corresponding ↵ (wherever ↵ appears in a proof). So it would be redundant to add
a new basic rule to allow us to introduce double negations.

(b) However, a little experimentation should quickly convince you that we do need a
new rule if we are to go in the opposite direction and infer ‘P’ from ‘¬¬P’. In §24.7
we will return to consider why this must be so. But for now we will just state a clearly
reliable third ¬-rule, which will give us what we need:

Double negation: Given a w� ¬¬↵, we can infer ↵.

Note: this rule only allows us to eliminate double negations at the very start of a w�.
For example, the inference ‘(P ^ ¬¬Q) 6 (P ^ Q)’ is valid; but to prove this, we have to
apply (^E) before we are in a position to apply (DN).

To introduce another simple example where we need to invoke (DN), consider the
following informal argument:

E Popper is a philosopher. It isn’t the case that Popper is a philosopher while
Quine isn’t. Therefore Quine is a philosopher.

This is valid. Why? Here’s a simple argument:
The first premiss tells us that Popper is a philosopher. Now temporarily suppose
that Quine isn’t a philosopher. Then we’ll be committed to saying Popper is a
philosopher while Quine isn’t. But that directly contradicts the second premiss.
Hence our temporary supposition leads to absurdity and has to be rejected: so it
can’t be that Quine isn’t a philosopher. Hence he is one.

Two comments about this:
(i) This example illustrates that sometimes, even if your target conclusion isn’t

a negated proposition, it may still be natural to establish it by a reductio
argument.

(ii) But note, our reductio arguments do always end with the negation of some
previous temporary supposition. So if that supposition is already a negated
proposition, the reductio argument will yield a doubly negated proposition.
Formally, we will need an application of our new Double Negation rule if we
want to remove the double negation.

We can now render E into a suitable PL language like this:

E
0

P, ¬(P ^ ¬Q) 6 Q.

And we can regiment the informal line of reasoning just sketched into a formal proof as
follows:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.4 Thinking strategically 169

(1) P (Prem)
(2) ¬(P ^ ¬Q) (Prem)
(3) ¬Q (Supp)
(4) (P ^ ¬Q) (^I 1, 3)
(5) ? (Abs 4, 2)
(6) ¬¬Q (RAA 3–5)
(7) Q (DN 6)

(c) We will soon see more examples of our three negation rules at work. But, for the
moment, let’s just finish this section with a diagrammatic summary of these natural rules
of inference with their short-form labels.

Rules for negation

(Abs)

�
...
¬�
...
?

(RAA)

↵
...

?
¬↵

(DN)
¬¬↵
...
↵

Note, though, that we have already learnt that the inputs for the application of a rule like
(Abs) can appear in either order, and needn’t be in the same column.

20.4 Thinking strategically

(a) Our five rules of inferences tell us what we can infer, not what we must infer – the
rules give us permissions, not instructions. And as we all know, permissions can allow
us to do pointlessly silly things. We therefore need to keep our wits about us if we are
not to waste time and e�ort when proof-building.

Consider for example this slightly messy inference:

F It isn’t true that Putnam is a logician while Quine isn’t. Also, it isn’t the
case that both Ryle and Quine are logicians. Hence it isn’t true that both
Putnam and Ryle are logicians.

This is valid (can you see why?). Translated into an appropriate PL language, the
argument becomes

F
0 ¬(P ^ ¬Q), ¬(R ^ Q) 6 ¬(P ^ R)

So how do we get from the premisses to the conclusion using our rules of inference?
The only rule that applies to our two premisses (separately or jointly) is (^I). And

we could use the rule to infer e.g. ‘(¬(P ^ ¬Q) ^ ¬(R ^ Q))’. This is a perfectly correct
inference to make. But given our target conclusion, it would be no help at all. The
permissive nature of our inference rules allows us to ramble o� on pointless detours like
this. So, as we said, some strategic thinking is needed.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

170 PL proofs: conjunction and negation

(b) In the present case, since we want to establish ‘¬(P ^ R)’ from the premisses, the
inviting strategy is to assume the opposite, i.e. to suppose ‘(P ^ R)’, and then try to show
that this leads to absurdity. So our proof should take the following shape:

¬(P ^ ¬Q)
¬(R ^ Q)

(P ^ R)
P

R

...

?
¬(P ^ R)

We therefore now have an easier problem. How are we going to argue towards absurdity
inside that subproof?

Well, only two of our rules of inference can be applied to the five w�s we have at
the beginning of our proof. We could use (^E) again on the third w� – but what would
be the point of that? Or we could conjoin any two of the w�s using (^I) – but that
would also be quite pointless again. So it seems that the only way forward is to make a
judiciously chosen further supposition. But this looks promising: a simple option is to
chose ‘Q’, as this will combine with ‘R’ to give us a contradiction.

So, let’s make this further temporary supposition, indenting the line of proof again
accordingly, and we get

(1) ¬(P ^ ¬Q) (Prem)
(2) ¬(R ^ Q) (Prem)
(3) (P ^ R) (Supp)
(4) P (^E 3)
(5) R (^E 3)
(6) Q (Supp)
(7) (R ^ Q) (^I 5 6)
(8) ? (Abs 7, 2)
(9) ¬Q (RAA 6–8)

And now we can see our way home! Another contradiction has come into view, and we
can easily finish our proof:

(9) (P ^ ¬Q) (^I 4, 9)
(10) ? (Abs 10, 1)
(11) ¬(P ^ R) (RAA 3-11)
Note the column-shifting discipline imposed in our Fitch-style proof system. In this

proof, we make two temporary suppositions, with the second one introduced while the
first is still active. That is why, at line (6), the column of reasoning has to be indented a
second time. Then we eventually discharge our suppositions one at a time, as we jump



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.5 ‘Availability’ 171

back leftwards just one column at a time. (Do compare this proof with the proof for
D
0, which also involves two reductio arguments. Make sure you understand why, in the

proof for D
0, those arguments appear one after the other, while here in the proof for F

0,
they appear one inside the other.)

(c) An important general point before continuing any further.
This is a logic book for philosophers, not a mathematics book. You should aim to

understand what is going on in Fitch-style proofs, and I hope to make this as clear as
possible. However, being able to discover proofs like the last one is much less important.
We will work through some more examples, talking strategies for finding proofs as we
go; but if you still find proof-discovery a bit challenging, no matter. It is not the crucial
thing. So don’t panic. Don’t get bogged down in tackling Exercises (and their worked
answers). Just read on and make sure you at least grasp the general principles at stake
in these chapters about proofs.

20.5 ‘Availability’

(a) Suppose we are working in a language where ‘P’ means Hillary is a woman and
‘Q’ means Donald is a woman. Consider this inference:

G ¬(P ^ Q) 6 ¬P

This has a true premiss and false conclusion, so it is of course invalid! Yet here is a
‘proof’ which purports to derive G’s conclusion from its premiss:

(1) ¬(P ^ Q) (Prem)
(2) P (Supp)
(3) Q (Supp)
(4) (P ^ Q) (^I 2, 3)
(5) ? (Abs 4, 1)
(6) ¬Q (RAA 3–5)
(7) Q (^E 4)
(8) ? (Abs 7, 6)
(9) ¬P (RAA 2–8)

Since G is invalid, something must be badly amiss with this putative ‘proof’. But what?
Everything preceding line (7) is fine. We make a first temporary supposition at line

(2), indenting the line of proof; and then we make another supposition at (3), so we indent
the proof a second time. The inner proof-within-a-proof then tells us that the supposition
‘Q’ at (3) leads to absurdity; so we can discharge that supposition and correctly appeal
to (RAA) to derive ‘¬Q’ at line (6). So far so good.

However, note that by the time we get to line (6), we have discharged the supposition
at line (3). Hence, from (6) onwards, the w� at line (3) and the w�s it implies are no

longer being assumed to be true. Once a subproof is finished or closed o�, its innards
are, so to speak, all ‘packed away’. In particular, by the time we get to line (7), the w�



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

172 PL proofs: conjunction and negation

‘(P ^ Q)’ from line (4) is no longer available to be used as an input to a further inference.
So we can’t now use it to infer ‘Q’.

(b) So what happens in subproofs, stays in subproofs – the Vegas rule! And for another
example of what can go wrong if you flout the rule, here is a second ‘proof’ for G:

(10) ¬(P ^ Q) (Prem)
(20) Q (Supp)
(30) P (Supp)
(40) (P ^ Q) (^I 30, 20)
(50) ? (Abs 40, 10)
(60) (Q ^ Q) (^I 20, 20)
(70) ¬P (RAA, 30–50)

This time the howler is at line (70). Why? Everything is unproblematic up to and including
line (50). Then we terminate the inner subproof, and basically ignore it at the next step:
but that’s fine – we don’t go wrong by not immediately applying reductio and by applying
another rule instead. We then terminate the subproof from (20) to (60). We are allowed
to do this too. We can’t go wrong by closing o� a subproof whenever we want – so long
as we no longer rely on its initial supposition or anything else we deduced while that
supposition was in force.

So, when we close o� the subproof from (20) to (60), by the Vegas rule all its contents
are to be considered as ‘packed away’, including the inner sequence of w�s from (3

0
) to

(5
0
). That’s why we can’t now apply (RAA) to that subproof to infer (70).

(c) With these two examples vividly in mind, here is a key definition (there seems to
be no universally-agreed terminology, but the idea is a standard one):

After a subproof is finished and its initial temporary supposition is discharged, its
w�s and any subproofs nested inside it become unavailable for future use.

W�s/subproofs earlier in a proof are, of course, deemed available until they become
unavailable. Our Fitch-style structuring of proofs makes it quite beautifully clear when
subproofs are finished, and hence when their contents become unavailable.

We can now state more carefully the crucial point which we first met in §20.2(b). The
following constraint will govern the application of all the rules of inference in our proof
system, to avoid howlers like those in our last two ‘proofs’:

When extending a proof by applying a rule of inference, the rule can only invoke as
its inputs some previous w�s/subproofs that are available at that stage in the proof.

20.6 Explosion and absurdity again

So far, then, so straightforward. The inference rules which we have introduced for
conjunction and negation seem intuitively compelling, and the way we have been putting



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.6 Explosion and absurdity again 173

them together in building up formal proofs seems entirely natural. But now we show
that our proof system is, perhaps unexpectedly, explosive! – compare Chapter 17.

(a) Consider, for example, the following two inferences:

C
00 ¬P 6 ¬(P ^ ¬Q),

E
0

P, ¬(P ^ ¬Q) 6 Q.

Both are valid. The first is a minor variant of C
0, and is proved in the same way. The

second we have met before. So here are (entirely natural-seeming) Fitch-style proofs for
both:

(1) ¬P

(2) (P ^ ¬Q)
(3) P

(4) ?
(5) ¬(P ^ ¬Q)

(1) P

(2) ¬(P ^ ¬Q)
(3) ¬Q

(4) (P ^ ¬Q)
(5) ?
(6) ¬¬Q

(7) Q

Now, we can chain together correctly constructed proofs so that the conclusion of
one becomes a premiss for the next, and the result will be a longer, equally correct,
proof. Or at least, this is what we normally assume we can do, e.g. in mathematics. And
surely, this is how logical inference can contribute massively to knowledge. We chain
together relatively obvious pieces of reasoning into something longer, less obvious, but
still reliably truth-preserving; and this way we get to warrant some new and perhaps
surprising conclusion.

Our formal proof system will allow us to combine proofs in this way. So let’s in
particular chain together our two compelling proofs above (just moving the right-hand
proof’s initial premiss to the top, since – merely as a matter of style – we insist on listing
premisses at the outset). We then get the proof H:

(1) P (Prem)
(2) ¬P (Prem)
(3) (P ^ ¬Q) (Supp)
(4) P (^E 3)
(5) ? (Abs 4, 2)
(6) ¬(P ^ ¬Q) (RAA 3–5)
(7) ¬Q (Supp)
(8) (P ^ ¬Q) (^I 1, 7)
(9) ? (Abs 8, 6)

(10) ¬¬Q (RAA 7–9)
(11) Q (DN 10)

This proof idea then easily generalizes. Replacing ‘P’ throughout by ↵ and ‘Q’ through-
out by �, we will get a proof from ↵,¬↵ to �. Explosion!



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

174 PL proofs: conjunction and negation

(b) When we first met the explosive inference in §6.5, it was as a perhaps unexpected
and probably unwelcome upshot of our informal definition of validity. We then asked
whether we should revise the definition because of this consequence. Or should we learn
to live with the idea that a contradiction entails anything?

In that early discussion, we indicated that rejecting explosion would come at a high
price. We can now see one reason why. In order to block our particular formal proof
from ‘P’ and ‘¬P’ to ‘Q’ we have just three options:

(1) We can reject the proof which we took to validate the inference C
00.

(2) We can reject the proof which we took to validate the inference E
0.

(3) We can drop the assumption that we can unrestrictedly chain correct inferences
together to get another correct inference.

None of these options looks very attractive at all. Which is why the great majority of
logicians do bite the bullet and accept explosion.

Philosophers being the contentious lot that they are, there exists a vocal minority who
resist, still insisting that explosion is a fallacy of irrelevance. We can’t here investigate the
various ways that have been suggested for escaping H and similar explosive arguments –
though, if forced to choose, I’d tinker with (3). It is fair to say, though, that no escape route
has proved very popular, particularly among mathematicians who want a practicable

logical system.

(c) Now for another explosive inference. We have o�cially added the absurdity sign
to our PL languages as a special w�, and it has featured in our formal (RAA) arguments
as the conclusion of some subproofs. But, like any other w�, it can also in principle
appear e.g. as a premiss in an argument.

(An aside here. We could – with only relatively minor adjustments – have arranged
things so that the absurdity sign only gets used to conclude subproofs. And then we
could downgrade the sign to being something like an exclamation mark signalling that
you have hit a contradiction. There are some philosophical attractions in doing things
this way. But we will continue along the more well-trodden path of treating ‘?’ as a w�.)

Since ‘?’ is like a generalized contradiction, we will now expect to be able to argue
from it to any conclusion we want. And we can: consider for example this proof, I:

(1) ? (Prem)
(2) ¬P (Supp)
(3) (¬P ^?) (^I 2, 1)
(4) ? (^I 3)
(5) ¬¬P (RAA 2–4)
(6) P (DN, 5)

Needless to say, this line of argument generalizes. Replace ‘P’ by any w� ↵, and we will
get a derivation from ‘?’ to ↵. This corresponds to the explosive tautologically valid
inference we tagged ex falso quodlibet in §17.3.

(d) The availability of proofs like I means that it is strictly speaking redundant to add
the following as separate rule of inference, given the other rules already in play:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§20.7 Summary 175

Ex Falso Quodlibet: Given ‘?’, we can infer any w� ↵.

However, despite the redundancy, it is usual to include this (EFQ) rule in the basic
package of inference rules for a Fitch-style proof system for a propositional logic which
uses the absurdity sign. There are a number of reasons for making this addition. The
shallow one is that it makes some proofs neater. The deeper reason is that we can see
(EFQ) as the rule which tell us just what it is to be an all-purpose absurdity – it is
something such that if that is true, then really anything goes!

So we will now adopt (EFQ) as a further rule for our proof system. Using this rule
we get a much snappier proof than H taking us from ‘P’ and ‘¬P’ to ‘Q’, namely J:

(1) P (Prem)
(2) ¬P (Prem)
(3) ? (Abs 1, 2)
(4) Q (EFQ 3)

Quite often, the (EFQ) rule is presented right at the very beginning of an exposition of
a proof system for propositional logic. And then we are immediately faced with proofs
like our last one which can seem like suspicious trickery. That’s why we have left adding
the (EFQ) rule until now, after the explosive consequence ‘P,¬P 6 Q’ has already
been proved. The derivation J which uses (EFQ) just allows us to get more quickly to a
destination that we can equally well get to the long way round, invoking only our initial
package of rules.

20.7 Summary

We have adopted five basic rules for arguing with conjunctions, negations, and
the absurdity sign. (^I) and (^E) tell us that we can argue from conjuncts to
conjunctions and back again. (Abs) tells us how to mark that we have got entangled
in the absurdity of blatant contradiction. (RAA) tells us that if a supposition leads
to absurdity, then we can infer its negation. (DN) allows us to eliminate (initial)
double negations.
In general terms, these basic rules seem entirely natural and compelling. So we
indeed ought to be able to use them to construct genuine proofs which show that
the eventual conclusion will be true if the premisses are. But we have choices about
how to implement the rules in detail.
We have adopted a Fitch-style vertical layout, whose distinctive feature is that we
indent the line of reasoning when we make a new temporary supposition, and
cancel the indent when we drop that supposition again.
It is crucial that the inputs invoked in applying a rule of inference are still available
to be used, i.e. they are not buried inside a subproof which is already finished. What
happens in a subproof, stays in a subproof.
We noted that, if we are allowed to chain proofs in the standard sort of way, then our



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

176 PL proofs: conjunction and negation

rules – natural though they are – warrant the explosive inference from contradictory
w�s to any conclusion we like. We also in e�ect get for free the further rule (EFQ)
which tells us that we can infer anything from absurdity – though we will o�cially
add this as a rule in its own right.

Exercises 20



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

21 PL proofs: disjunction

There are a number of everyday modes of inference which involve making temporary
suppositions for the sake of argument. So far, we have met reductio proofs. In this chapter
we introduce the important idea of a proof by cases.

A formal proof system which smoothly handles temporary suppositions – and so
copes with reductio and proof by cases in a natural way – is standardly called a natural

deduction system. There is more than one type of natural deduction system on the market.
But we have to concentrate on just one. So we continue to present our Fitch-style system,
extending it now to deal with disjunctions. (The discussion, with lots of proof examples,
is inevitably dense in places. Take things slowly.)

21.1 The iteration rule

First, however, consider the following little inference which involves none of the propo-
sitional connectives:

A Popper was born in 1902. Quine was born in 1908. Russell was born in
1872. Hence, Quine was born in 1908.

Given our understanding of what makes for validity, this counts as trivially valid, for
there is certainly no possible situation in which our premisses are all true and the
conclusion false – see §3.2(b).

Correspondingly, in a suitable PL language,

A
0

P, Q, R 6 Q

is also trivially valid. We will therefore want to be able to construct a proof of the
conclusion from the premisses in our PL proof system.

One way of getting a proof ending in the right conclusion is simply to adopt a new
rule:

Iteration: At any inference step, we can reiterate any available w�.

This easy rule cannot lead us astray! If a w� is already available at a given step,
repeating it doesn’t involve any new commitment. (In fact, we will almost always be
iterating premisses or ‘live’ – i.e. undischarged – suppositions.)

Using our iteration rule, call it ‘(Iter)’ for short, we can construct the required minia-
ture proof for the inference in A

0:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

178 PL proofs: disjunction

(1) P (Prem)
(2) Q (Prem)
(3) R (Prem)
(4) Q (Iter 2)

Now, we could have managed perfectly well without using any iteration rule. For –
assuming that we can use the usual rules for conjunction – our rule is actually redundant.
In the present case, we could argue as follows:

(1) P (Prem)
(2) Q (Prem)
(3) R (Prem)
(4) (Q ^ Q) (^I 2, 2)
(5) Q (^E 4)

We said in §20.1(a) that we can appeal to the same input twice when applying (^I), as
in (4). And note, the trick in this proof can be applied quite generally: in other words,
whenever we are tempted to use (Iter), we could use the two conjunction rules instead.

Still, it does seem rather perverse to invoke the conjunction rules in a little two-step
dance in order to derive a conclusion which contains no conjunction from premisses
which equally contain no conjunctions. So, just on the grounds that it occasionally makes
for more natural proofs, we will adopt the trivially safe additional rule (Iter) – though it
is worth stressing that there is no right or wrong policy here.

21.2 Introducing and eliminating disjunctions

(a) We move on, then, to introduce two principles for reasoning with disjunctions (take
all disjunctions in this chapter to be inclusive).

Consider first the following little inference:
B Quine is a logician. Therefore either Popper or Quine is a logician, or

Russell is one.
This is of course trivially valid. You can infer an inclusive disjunction from either
disjunct. So from the premiss that Quine is a logician you can infer that Popper or Quine
is a logician. And from that interim conclusion you can now infer that either Popper or
Quine is a logician, or Russell is one. It is as easy as that.

Going formal, the inferential principle for arguing to a disjunction becomes simply
this:

_-Introduction: Given a w� ↵, we can infer (↵ _ �) for any w� �. Equally given
�, we can infer (↵ _ �) for any ↵.

With ‘P’ meaning Popper is a logician, etc., our everyday inference B can be rendered
into a suitable PL language as

B
0

Q 6 ((P _ Q) _ R).



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§21.2 Introducing and eliminating disjunctions 179

And we can then mirror our informal proof which shows that B is valid by a direct – and
truth-preserving! – formal PL proof:

(1) Q (Prem)
(2) (P _ Q) (_I 1)
(3) ((P _ Q) _ R) (_I 2)

(We use the natural label for our new rule in the commentary, and indicate the line
number of the w� which an application of the rule appeals to.)

(b) To work towards the corresponding _-elimination rule, let’s start by considering a
couple of informal one-premiss inferences. First:

C Either Popper and Quine are both logicians, or Quine and Russell are both
logicians. Therefore Quine is a logician.

This is valid. Why? Here’s an informal proof, spelt out in laborious detail:
Suppose for the sake of argument that the first disjunct of our premiss is true, so
Popper and Quine are both logicians. Then, on that assumption, Quine in particular
is a logician.

Suppose alternatively that the second disjunct of our premiss is true, so Quine
and Russell are both logicians. It follows on that assumption too that Quine is a
logician.

So either way – whichever disjunct of our initial premiss holds – we get our
desired conclusion.

The inferential principle in play here is a version of proof by cases. We are given that
(at least) one of two cases A and B holds. We show that in the first case C follows. We
show that, equally, in the second case C follows. Since C follows in either case, and we
are given that (at least) one of the cases holds, we can infer C outright.

Here’s a second inference:
D Polly and Quentin are both married. So it isn’t the case that either Polly is

unmarried or that Quentin is.
This too is valid. How can we informally show that? We could argue like this.

Suppose for a moment the opposite of the conclusion holds, i.e. suppose that either
Polly is unmarried or Quentin is unmarried.

But the first case leads to absurdity, since it is flatly contradicted by our initial
premiss which tells us that Polly is married. And likewise the second case leads
to absurdity, since it is flatly contradicted by our initial premiss which tells us that
Quentin is married.

So either way, whichever disjunct of our initial supposition holds, we get absur-
dity. Therefore that supposition leads to absurdity. Hence it has to be rejected.

Again, in the middle of this informal proof we use a version of proof by cases. We
suppose that (at least) one of two cases A and B holds. We show that in the first case
absurdity follows. We show that, equally, in the second case absurdity follows. Since we
can infer an absurdity in either case, the supposition that one of the cases A and B holds
is itself absurd.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

180 PL proofs: disjunction

The key idea, then, is this: if we are given a disjunction, and each disjunct leads to the
same conclusion (whether an ordinary proposition or absurdity), then we can infer that
conclusion outright. Going formal, this natural principle is captured by the following
rule of inference in our Fitch-style system. Suppose ↵, � and � are any w�s (possibly
the absurd w� ‘?’), then:

_-Elimination: Given (↵ _ �), a finished subproof from the temporary supposition
↵ to �, and also a finished subproof from the temporary supposition � to �, we can
infer �.

So let’s put this to work.
First, C can be rendered into a suitable PL language as

C
0 ((P ^ Q) _ (Q ^ R)) 6 Q.

Then we can closely mirror our informal proof for C with the following formal proof
for C

0:
(1) ((P ^ Q) _ (Q ^ R) (Prem)
(2) (P ^ Q) (Supp)
(3) Q (^E 2)
(4) (Q ^ R) (Supp)
(5) Q (^E 4)
(6) Q (_E 1, 2–3, 4–5)

Three explanatory comments about the layout here:
(i) At line (2) we suppose for the sake of argument that the first disjunct of (1)

is true, indenting our proof a column rightwards as we do so. When we finish
this first subproof after line (3), we head back a column leftwards. However,
we immediately make the alternative supposition that the second disjunct of
(1) is true, giving us a new supposition at line (4) to start the second subproof.
And therefore we indent our column of reasoning rightwards again. Hence the
proof layout as displayed.

(ii) There is therefore a little gap between the vertical lines marking the extents
of the two di�erent finished subproofs – but it helps the eye if we put a very
small bar in the gap to emphasize the break between the subproofs.

(iii) Our short-form annotation of the final step records the three inputs to the final
_-elimination inference; we give the line number of the relevant disjunction,
and then give the extents of the two relevant subproofs.

Putting ‘(P _ Q)’ for ↵, ‘(Q _ R)’ for �, and ‘Q’ for �, the final line is indeed an
application of the (_E) rule.

Likewise, using the obvious glossary, here is a formal version of D (giving us an
instance of one of De Morgan’s laws – see §13.4):

D
0 (P ^ Q) 6 ¬(¬P _ ¬Q).

And we can replicate our informal line of reasoning for D as follows:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§21.2 Introducing and eliminating disjunctions 181

(1) (P ^ Q) (Prem)
(2) (¬P _ ¬Q) (Supp)
(3) ¬P (Supp)
(4) P (^E 1)
(5) ? (Abs 4, 3)
(6) ¬Q (Supp)
(7) Q (^E 1)
(8) ? (Abs 7,6)
(9) ? (_E 2, 3–5, 6–8)

(10) ¬(¬P _ ¬Q) (RAA 4,10)
This time, putting ‘¬P’ for ↵, ‘¬Q’ for � and ‘?’ for �, line (9) is again an application
of the (_E) rule.

(c) Let’s take another example. So consider the informal argument

E Popper is a clear writer. Either Quine or Russell is a clear writer. Hence
either Popper and Quine are clear writers, or both Popper and Russell are.

Valid again, as is shown by considering cases.

Take the case where Quine is a clear writer. Then Popper and Quine are clear
writers – so, it will true that either Popper and Quine are clear writers or Popper
and Russell are. Similarly in the other case, where Russell is a clear writer. Either
way, our desired conclusion follows.

Going formal, here is a corresponding PL inference:

E
0

P, (Q _ R) 6 ((P ^ Q) _ (P ^ R)).

This can be shown to be valid by the following proof:

(1) P (Prem)
(2) (Q _ R) (Prem)
(3) Q (Supp)
(4) (P ^ Q) (^I 1, 3)
(5) ((P ^ Q) _ (P ^ R)) (_I 4)
(6) R (Supp)
(7) (P _ R) (^I 1, 6)
(8) ((P ^ Q) _ (P ^ R)) (_I 7)
(9) ((P ^ Q) _ (P ^ R)) (_E 2, 3–5, 6–8)

(d) Now take the trivial inference

F (P _ P) 6 P

We can prove the conclusion from the premisses here by another proof by cases:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

182 PL proofs: disjunction

(1) (P _ P) (Prem)
(2) P (Supp)
(3) P (Iter 2)
(4) P (Supp)
(5) P (Iter 4)
(6) P (_E 1, 2–3, 4–5)

(Minor point: we could also allow the same subproof to be invoked twice by (_E), just
as we allow the same w� to be invoked twice e.g. in applying (^I).)

Note our use of the iteration rule (Iter) to get us from the supposition ‘P’ at (2)
to the subproof’s conclusion ‘P’ at (3). As we remarked in the previous section, we
could equally derive the same conclusion by introducing and then eliminating a con-
junction. But this would again seem rather unnatural. We want to be able to warrant the
conjunction-free F without invoking conjunction rules, and (Iter) enables us to do that.

(e) Having introduced our _-rules and seen some easy examples of the rules in use,
let’s pause for a diagrammatic summary:

Rules for disjunction

(_I)
↵
...

(↵_ �)

�
...

(↵_ �)
(_E)

(↵_ �)
...

↵
...

�

�
...

�
�

Strictly speaking, we do not require the three elements for an application of (_E) to
appear in the order diagrammed, nor do we require one subproof to appear immediately
after the other. But in practice, that’s the usual layout.

We noted in §20.1(a) how (^E) allows us to recover from a conjunction (↵ ^ �) the
inputs that (^I) requires in arguing to that conjunction. So (^E) can be used to ‘reverse’
an application of (^I). Now, we obviously can’t reverse an application of (_I) in quite
the same way. For of course we cannot argue backwards from a disjunction (↵ _ �) to
recover whichever input (_I) might use in arguing to that disjunction.

But (_E) can be used to undo an application of (_I) in a closely related sense. For
(_E) allows us to argue forwards from (↵ _ �) to any conclusion we could already have
derived equally from ↵ and � before we used (_I). If we can already infer � from ↵,
and also infer � from �, then (_E) allows us still to get to �, now from (↵ _ �).

So our (_I) and (_E) rules also do seem to fit together very nicely – as it is often put,
they are in harmony.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§21.3 Two more proofs 183

21.3 Two more proofs

(a) For another example, consider the following (interpret the atoms however you like):

G ¬(¬P _ ¬Q) 6 (P ^ Q)
This is valid, being an instance of another of De Morgan’s Laws.

How can we show this to be a valid inference by a PL proof in our system? Given that
our conclusion is a conjunction, a natural strategy is first to derive one conjunct from
our given premiss, and then to derive the other conjunct, before conjoining these two
interim conclusions. Which breaks down the proof into two simpler tasks.

How then can we prove ‘P’ from our premiss? There’s no rule we can directly
apply to the premiss. (Reality check: why would it be a howler to try to infer ‘P’ from
‘¬(¬P _ ¬Q)’ by a straight application of (DN)?) What else can we do, then, but suppose
‘¬P’, and aim for a contradiction?

(1) ¬(¬P _ ¬Q) (Prem)
(2) ¬P (Supp)
(3) (¬P _ ¬Q) (_I 2)
(4) ? (Abs 3, 1)
(5) ¬¬P (RAA 2–4)
(6) P (DN 5)
(7) ¬Q (Supp)
(8) (¬P _ ¬Q) (_I 7)
(9) ? (Abs 8, 1)

(10) ¬¬Q (RAA 7–9)
(11) Q (DN 10)
(12) (P ^ Q) (^I 6, 11)

(b) Now let’s show the following is valid by another Fitch-style derivation of the
conclusion from the premiss:

H (P _ (Q _ R)) 6 ((P _ Q) _ R)
We have a disjunctive premiss. We need to use it in a proof by cases. So we can already
sketch out the shape of our hoped-for proof:

(P _ (Q _ R))
P (Suppose first disjunct of initial premiss is true)
...

((P _ Q) _ R) (Target conclusion)
(Q _ R) (Suppose second disjunct is true)
...

((P _ Q) _ R) (The same target conclusion)
((P _ Q) _ R) (_E from initial premiss and two subproofs)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

184 PL proofs: disjunction

How is the first subproof to go? Plainly, we can use (_I) twice to arrive at ‘((P _ Q) _ R)’.
How is the second subproof to go? This time we have a disjunctive temporary supposition
‘(Q _ R)’. Hence – and this is the important point to see – we will now have to embed
another proof by cases (inside the main one), with two new subproofs starting ‘Q’ and
‘R’ and each aiming at the same conclusion ‘((P _ Q) _ R)’.

With these guiding thoughts in mind, a finished proof is now quite easily found:

(1) (P _ (Q _ R)) (Prem)
(2) P (Supp)
(3) (P _ Q) (_I 3)
(4) ((P _ Q) _ R) (_I 4)
(5) (Q _ R) (Supp)
(6) Q (Supp)
(7) (P _ Q) (_I 6)
(8) ((P _ Q) _ R) (_I 7)
(9) R (Supp)

(10) ((P _ Q) _ R) (_I 9)
(11) ((P _ Q) _ R) (_E 5, 6–8, 9–10)
(12) ((P _ Q) _ R) (_E 1, 2–4, 5–11)

21.4 Disjunctive syllogisms

(a) We turn next to discuss so-called disjunctive syllogism inferences. Informally, these
are inferences where we take a disjunction and the negation of one disjunct, and then
infer the other disjunct. Thus from A or B and Not-A we can infer B; and equally, from
A or B and Not-B we can infer A. Given our standard understanding of negation and
disjunction, such inferences are certainly valid (see argument B in §1.3).

So consider a formal instance, e.g.
I (P _ Q), ¬P 6 Q

How can we derive the conclusion from the premisses by a PL proof, using just our

current rules of inference? We will need a proof by cases, shaped like this:

(P _ Q) (Prem)
¬P (Prem)

P (Supp)
...

Q

Q (Supp)
...

Q

Q (_E, from the first premiss and the two subproofs)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§21.4 Disjunctive syllogisms 185

Filling in the second subproof takes no work – it is just an iteration step. But what
about the first subproof? In that subproof, the initial premiss ‘¬P’ and the temporary
assumption ‘P’ are both available. We will then have to appeal to some explosive
argument to get us to ‘Q’.

There are various options. We could for example borrow the long-way-round proof
H from the last chapter. But now we see the point of having the fast-track explosive rule
(EFQ) to hand. For that enables us to give the following much snappier proof:

(1) (P _ Q) (Prem)
(2) ¬P (Prem)
(3) P (Supp)
(4) ? (Abs 3, 2)
(5) Q (EFQ 4)
(6) Q (Supp)
(7) Q (Iter)
(8) Q (_E)

And the proof-strategy generalizes as you would now expect: we can warrant any PL

disjunctive syllogism of the form (↵ _ �),¬↵ 6 �, and we can similarly warrant any
inference of the form (↵ _ �),¬� 6 ↵.

(b) What we have just given is indeed the kind of derivation for a disjunctive syllogism
that you standardly meet in Fitch-style proof systems. But isn’t it rather peculiar?

Return to informal argumentation for a moment. Assume you believe that A or B

holds. Then suppose you realize that the first disjunct is inconsistent with something
else you already accept, X . In this case, don’t you now simply rule out the first option

A, and immediately conclude that B without any further fuss – and then argue on from
there to some desired conclusion C? You certainly don’t ordinarily think that you have
to pause to show, by some explosive inference, that A plus X together entail B!

If we want to stay rather closer to ordinary ways of reasoning, then – following on
from what we’ve just said – one option is to liberalize our (_E) rule by adding a further
clause:

Given (↵ _ �), a subproof from one of the disjuncts as temporary supposition to
the w� � and also a subproof from the other disjunct to absurdity, we can infer �.

And then our proof for I could be rather more naturally completed by appeal to this
additional clause, without any unnatural play with explosion:

(1) (P _ Q) (Prem)
(2) ¬P (Prem)
(3) P (Supp)
(4) ? (Abs 3, 2)
(5) Q (Supp)
(6) Q (Iter 6)
(7) Q (Liberalized _E 1, 3–4, 5–6)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

186 PL proofs: disjunction

Is it worth liberalizing our (_E) rule like this, though? The shortening of a proof by
just one line is neither here nor there. So it comes down to a question of trading o�
economy of rules against intuitive naturalness of proofs, and you pays your money and
you takes your choice. We did introduce the rule (Iter) even though it is strictly speaking
redundant, because it made some proofs more natural. We could equally well liberalize
our (_E) rule on just the same grounds. But – like it or not – the usual line is to stick to
our original version of (_E) and then use (EFQ) to derive a disjunctive syllogism.

And on balance it is probably unwise to depart significantly from the conventional
wisdom in an introductory text like this: for a start, we want to our story to integrate
smoothly with more advanced texts. So – with some regrets – we will leave our (_E)
rule in its original form.

(c) Let’s have another example of an argument where we need to get use (EFQ) in
order to massage our formal proof to conform to our standard (_E) rule. So consider:

J Either Popper and Quine were both born in the twentieth century or Quine
and Russell were both born in the twentieth century. But Russell wasn’t
born in the twentieth century. So Popper was.

Why is this valid? Informally,

Consider cases from the disjunctive premiss. The second case – Quine and Russell
both being born in the twentieth century – is quickly ruled out by the premiss that
Russell wasn’t born in the twentieth century. So that leaves only the first case in
play: and in that case, Popper was indeed born in the twentieth century.

Using a language with the obvious glossary, inference J can be formally rendered as
J
0 ((P ^ Q) _ (Q ^ R)), ¬R 6 P.

And then here is a formal approximation of our sketched proof:

(1) ((P ^ Q) _ (Q ^ R)) (Prem)
(2) ¬R (Prem)
(3) (P ^ Q) (Supp)
(4) P (^E, 3)
(5) (Q ^ R) (Supp)
(6) R (^E, 5)
(7) ? (Abs 6, 2)
(8) P (EFQ 7)
(9) P (_E 1, 3–4, 5–8)

Here, the second disjunct leads to absurdity, as in the intuitive proof. But to shoehorn
our formal proof into the standard form of a (_E) argument, we need to get the second
disjunct to lead eventually to ‘P’. We bridge the gap by appealing to (EFQ).

(d) Just for the fun of the ride, let’s finish this section with a more complicated
example, where our _-elimination rule is appealed to twice over (with one occurrence
inside another, as in the proof of H). So take the following inference:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§21.4 Disjunctive syllogisms 187

K Either Polly is unmarried or Roland is married. But at least one of Polly
and Quentin is married. And it’s not true that Quentin is married while
Sebastian isn’t. So either Roland or Sebastian is married.

This is valid. Informally,
Consider cases from the second premiss.

Suppose Polly is married – then, by disjunctive syllogism using the first premiss,
Roland is married; and hence Roland or Sebastian is married.

Suppose alternatively that Quentin is married – then we can use the third premiss
to show that Sebastian is married too, and hence that Roland or Sebastian is married.

In both cases we get our conclusion.
See if you can construct a formal version of this informal proof before reading on.

(e) K can be regimented into a PL language like this:
K
0 (¬P _ R), (P _ Q), ¬(Q ^ ¬S) 6 (R _ S).

Note, we have in fact already met this argument – it was E in §15.5 where we showed it
to be valid by the truth-table test. But now we can turn our informal proof by cases for
K’s validity into a Fitch-style proof warranting K

0 as follows:

(1) (¬P _ R) (Prem)
(2) (P _ Q) (Prem)
(3) ¬(Q ^ ¬S) (Prem)
(4) P (Supp)
(5) ¬P (Supp)
(6) ? (Abs 5,4)
(7) R (EFQ 6)
(8) R (Supp)
(9) R (Iter 8)

(10) R (_E 1, 5–7, 8–9)
(11) (R _ S) (_I 10)
(12) Q (Supp)
(13) ¬S (Supp)
(14) (Q ^ ¬S) (^I 12, 13)
(15) ? (Abs 14, 3)
(16) ¬¬S (RAA 13–15
(17) S (DN 16)
(18) (R _ S) (_I 17)
(19) (R _ S) (_E 2, 4–11, 12–18)

We got there! But don’t worry if you didn’t see in advance how the details were going
to work out. Just check through the proof now and make sure that, in retrospect, you can
follow both the overall strategy and the individual steps.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

188 PL proofs: disjunction

21.5 Summary

In this chapter, we have added to our Fitch-style proof system the introduction and
elimination rules (_I) and (_E) for dealing with disjunctions.
These new rules again seem entirely compelling. However, if we restrict ourselves
to just the standard (_E) rule, some proofs – for disjunctive syllogisms, for example
– can look rather unnatural, needing to appeal to (EFQ). But this is usually taken
to be a price worth paying for keeping our rules simple.
Note: we have yet to summarize the permissible ways of assembling inferences
together into structured proofs (so far we have been relying on examples): we will
give the o�cial story at the beginning of Chapter 24.

Exercises 21



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

22 PL proofs: conditionals

We started Chapter 18 by saying (in e�ect) ‘It would be nice if we can treat ‘if’ as
another truth-functional connective. For then we’ll be able to carry over our familiar
apparatus of truth-table testing, etc.’ However, in Chapter 19 (and in its Exercises), we
noted real problems with simply identifying ‘if’ and the truth-functional ‘!’. Though
we did end that chapter by suggesting that, all the same, ‘!’ will serve as a cleaned-up
substitute for the ordinary conditional for many purposes.

Let’s now start from a di�erent thought: ‘It would be nice if we can treat the conditional
as another connective governed by intuitively compelling inference rules, and can extend
our now familiar Fitch-style proof system to cover arguments involving conditionals.
Perhaps this will give us a more appealing way of handling the logic of ‘if’!’

So set aside for now the o�cial truth-functional semantics for the arrow symbol in
PL languages. Keep the same syntax, but – for a while – regard the symbol ‘!’ just as
standing in for a conditional governed by the two natural-seeming rules of inference we
are about to introduce. Where does this take us?

22.1 Rules for the conditional

(a) As we saw in Chapter 18, the fundamental principle for arguing from a conditional
is (MP), modus ponens. So here is one inference rule we’ll certainly want for ‘!’:

Modus ponens: Given ↵ and (↵ ! �), we can infer �.

What about arguing to a conditional conclusion? Well, here is Jo considering a
particular given triangle �. She wants to prove the conditional if � is isosceles, then �’s

base angles are equal. What does Jo do? She supposes for the sake of argument that �
is isosceles (‘Let � be isosceles’). Then, on the basis of that supposition, she proves �’s

base angles are equal. And she takes it that this establishes her desired conditional.
The inferential principle that Jo is relying on is this:
Suppose that – given some background assumptions – we can argue from the
additional temporary supposition A to the conclusion C. Then – given the same
background – we can infer if A then C.

In fact, in ordinary reasoning, we often hardly notice the di�erence between (i) making
a supposition A and drawing a conclusion C and (ii) asserting a conditional if A then C.

So now for a formal version of this inferential principle:



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

190 PL proofs: conditionals

Conditional proof : Given a finished subproof starting with the temporary supposi-
tion ↵ and ending �, we can infer (↵ ! �).

Immediately putting these two rules into diagrammatic form, we have:

Rules for the conditional

(MP)

↵
...

(↵ ! �)
...
�

(CP)

↵
...

�

(↵ ! �)

We can think of (CP) as our !-introduction rule. What then is the matching !-
elimination rule that extracts from a conditional w� just what the introduction rule
requires us to put in? (CP) grounds (↵ ! �) in a proof from ↵ to �; so the corresponding
elimination rule should say that, given (↵ ! �), then if we do have ↵ we should be able
to conclude �. Which is exactly what (MP) says.

(b) The various intuitively valid inferences involving conditionals that we met in §18.4
can now be warranted by proofs using our new conditional rules plus our existing rules
for conjunction, disjunction, and negations.

Start with the modus tollens inference

A (P! Q), ¬Q 6 ¬P

The proof strategy should be obvious – we want to prove the negation of something, and
so we appeal to (RAA), as in:

(1) (P! Q) (Prem)
(2) ¬Q (Prem)
(3) P (Supp)
(4) Q (MP 3, 1)
(5) ? (Abs 4, 2)
(6) ¬P (RAA 3–5)

Here we annotate the application of (MP) in the predictable way.
And note that the proof-strategy here generalizes: whenever we have (↵ ! �) and

¬�, we can of course use a proof of the same shape to derive ¬↵. It would therefore
be redundant to add a separate modus tollens rule to our repertoire of rules for the
conditional.

Next, we noted that the informal counterpart of the inference
B (P! Q), (Q! R) 6 (P! R)

is intuitively correct for simple conditionals. And here is how to derive the conclusion
from the premisses, using our conditional rules. The proof strategy is the default one
when the target conclusion is a conditional. We temporarily assume the antecedent for



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§22.1 Rules for the conditional 191

the sake of argument and then aim for the consequent, so we can use the introduction
rule (CP).

(1) (P! Q) (Prem)
(2) (Q! R) (Prem)
(3) P (Supp)
(4) Q (MP 3, 1)
(5) R (MP 4, 2)
(6) (P! R) (CP 3–5)

The way we annotate the application of the conditional proof rule (CP) by giving the
extent of the relevant subproof is also just as you would expect.

Next consider the contraposition inference (i.e. the inference from a conditional to its
contrapositive) in

C (P! Q) 6 (¬Q! ¬P)
Again, we are aiming to prove a conditional. So again the strategy is to temporarily
suppose the antecedent ‘¬Q’ is true and aim to derive to consequent ‘¬P’ with a view
to using (CP). But this just sets us o� on the same modus tollens inference as in A after
line (2):

(1) (P! Q) (Prem)
(2) ¬Q (Supp)
(3) P (Supp)
(4) Q (MP 3, 1)
(5) ? (Abs 4, 1)
(6) ¬P (RAA 2–5)
(7) (¬Q! ¬P) (CP 2–6)

And now for the version of proof by cases that we met in §18.4:

D (P _ Q), (P! R), (Q! R) 6 R.

To argue from the disjunctive first premiss, we have to use (_E). And then the proof
goes in the predictable way.

(1) (P _ Q) (Prem)
(2) (P! R) (Prem)
(3) (Q! R) (Prem)
(4) P (Supp)
(5) R (MP 4, 2)
(6) Q (Supp)
(7) R (MP 6, 3)
(8) R (_E 1, 4–5, 6–7)
Let’s have one more example in this initial group. So consider the inference



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

192 PL proofs: conditionals

E (P! (Q! R)) 6 (Q! (P! R)).

This inference intuitively ought to be valid (why?). So how do we derive the conclusion
from the premiss?

The target conclusion is a conditional, so the obvious thing to do is assume the
antecedent ‘Q’ and aim for the consequent ‘(P ! R)’, preparing to use (CP). Our new
target then is another conditional, and to prove this we again assume its antecedent ‘P’
and aim for its consequent ‘R’, preparing to invoke (CP) again.

With that plan in mind, the proof then really writes itself:

(1) (P! (Q! R) (Prem)
(2) Q (Supp)
(3) P (Supp)
(4) (Q! R) (MP 3, 1)
(5) R (MP 2, 4)
(6) (P! R) (CP 3–5)
(7) (Q! (P! R)) (CP 2–6)

22.2 More proofs with conditionals

Let’s work through a few more proofs – starting with two desirable results, but ending
in a perhaps unexpected place.

(a) In §19.2, we met the following two informal arguments (keeping the same labels):
X(i) The claim if A then C rules out having A true and C false. So if A then C

implies it isn’t the case that both A and not-C.
Y(i) Suppose if A then C. So we either have not-A, or we have A and hence C. So

if A then C implies either not-A or C.
Using our new derivation rules for conditionals, we can now provide proofs for corre-
sponding formal inferences, as in:

F (P! Q) 6 ¬(P ^ ¬Q)
G (P! Q) 6 (¬P _ Q).

The strategy for the first proof is straightforward; we just follow the implied reductio in
the informal argument X(i):

(1) (P! Q) (Prem)
(2) (P ^ ¬Q) (Supp)
(3) P (^E 2)
(4) Q (MP 3, 1)
(5) ¬Q (^E 2)
(6) ? (Abs 4, 5)
(7) ¬(P ^ ¬Q) (RAA 2–6)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§22.2 More proofs with conditionals 193

The second proof is a little more interesting. The informal argument in Y(i) quietly
appeals to the law of excluded middle – but we won’t meet the formal version of that
until the next chapter. So let’s instead proceed as follows: we temporarily suppose the
opposite of the conclusion, and aim to reduce that to absurdity. So then our proof should
have the shape

(P! Q) (Prem)
¬(¬P _ Q) (Supp)
...

?
¬¬(¬P _ Q) (RAA)
(¬P _ Q) (DN)

How do we join up the dots? We can’t yet apply a conditional rule to the initial premiss,
nor can we apply a negation rule to the supposition. And it would be pointless to conjoin
them or to disjoin either with some other w�. There’s only one sensible thing to do!
Namely, make another supposition. The first thing to try is assuming ‘P’, which sets up
a modus ponens inference. Things then go easily enough:

(1) (P! Q) (Prem)
(2) ¬(¬P _ Q) (Supp)
(3) P (Supp)
(4) Q (MP 3, 1)
(5) (¬P _ Q) (_I 4)
(6) ? (Abs 5, 2)
(7) ¬P (RAA 2–6)
(8) (¬P _ Q) (_I 7)
(9) ? (Abs 8, 2)

(10) ¬¬(¬P _ Q) (RAA 2–9)
(11) (¬P _ Q) (DN 10)

(b) As we noted before, X(i) is just the basic falsehood condition (FC) from §18.2.
Hence any good rules for arguing with a conditional should certainly allow us to show
that ‘(P! Q)’ entails ‘¬(P ^ ¬Q)’ (and should also allow us to show that it entails the
equivalent ‘(¬P _ Q)’). So far, then, so good.

But what about the other two informal arguments we met in §19.2, namely
X(ii) Suppose we are given that it isn’t the case that both A and not-C. Then we can

infer that if A is actually true we can’t have not-C as well: in other words if A

then C.
Y(ii) Suppose we are given either not-A or C. Then if not the first, then the second.

So we can infer if A then C.
Well, these two arguments can also be mirrored using our formal derivation rules for
conditionals.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

194 PL proofs: conditionals

For example, we can warrant the following inferences:
H ¬(P ^ ¬Q) 6 (P! Q)
I (¬P _ Q) 6 (P! Q).

For the first of these we can argue simply as follows:

(1) ¬(P ^ ¬Q) (Prem)
(2) P (Supp)
(3) ¬Q (Supp)
(4) (P ^ ¬Q) (^I 2, 3)
(5) ? (Abs 4, 1)
(6) ¬¬Q (RAA 2–6)
(7) Q (DN 7)
(8) (P! Q) (CP 2–8)

And for the second we just echo the informal disjunctive syllogism in Y(ii):

(1) (¬P _ Q) (Prem)
(2) P (Supp)
(3) ¬P (Supp)
(4) ? (Abs 2, 3)
(5) Q (EFQ 4)
(6) Q (Supp)
(7) Q (Iter 5)
(8) Q (_E 1, 3–5, 6–7)
(9) (P! Q) (CP 2–8)

Do note that the application of (_E) here is quite correct, even though the subproofs
are indented more than one column in from the original disjunction at line (1). All that
matters is that, at line (8), ‘(¬P _ Q)’ plus the two subproofs are indeed all available.

(c) Put together the trivial proof from ‘¬P’ to ‘(¬P _ Q)’ with a proof for I and we get
a proof warranting the inference

J ¬P 6 (P! Q).
Two comments on this. First, note that there is a quicker proof for this inference, again

using explosion:

¬P (Prem)
P (Supp)
? (Abs 2, 1)
Q (EFQ 4)

(P! Q) (CP)
But second it is worth remarking that explosion is not really of the essence here. Suppose
we had adopted the arguably more natural liberalized (_E) rule suggested in passing



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§22.3 The material conditional again 195

in §21.4(b). We could then have proved I – and hence proved J – without relying on
explosion.

22.3 The material conditional again

(a) In §18.4, we noted that the material conditional satisfies the modus ponens principle
(MP). In §18.7, we noted that, if � together with some background premisses entails
�, then those premisses entail (� ! �), where the arrow is specifically the material
conditional. So the material conditional satisfies the conditional proof principle (CP).

It is no surprise that the material conditional obeys (MP) and (CP). What is perhaps
more surprising is a converse point. Suppose we add a conditional (symbolized by the
arrow) to our Fitch-style PL logical system for the other connectives. Suppose we initially
require only that this conditional is governed by the two intuitively compelling principles
(MP) and (CP). Then, generalizing from the examples we met in the last section, a w�
of the form (↵ ! �) will imply and be implied by the corresponding w� ¬(↵ ^ ¬�).
Similarly, (↵ ! �) will imply and be implied by (¬↵ _ �).

We wondered in the preamble to this chapter whether we could avoid the problems of
identifying ‘if’ with the material conditional by introducing a conditional into our formal
logic via intuitively appealing inference rules rather than via a truth-table definition. But
it now seems that this is no help. Start from a standard propositional logic for the other
connectives, add a conditional obeying the natural rules (MP) and (CP), and it will end
up behaving exactly like the material conditional again.

(b) We can return, then, to the remarks in §19.6 about adopting the material conditional.
Nearly all mathematicians cheerfully accept the usual logic for the other connectives.
And mathematicians reason all the time using a conditional which unrestrictedly obeys
(CP) as well as (MP) – in particular, it is absolutely standard in informal mathematical
reasoning to prove a conditional by assuming the antecedent and aiming for the conse-
quent. Therefore, these mathematicians are reasoning with a conditional which behaves
like the material conditional. That’s why, as we said, mathematics textbooks will often
explicitly adopt the material conditional, announcing that this is indeed what is o�cially
meant by (their symbol for) ‘if’.

22.4 Summary

We add now to our PL proof apparatus inference rules for the conditional – namely
(MP) and (CP), i.e. modus ponens and conditional proof. One more, the inference
rules we are adding to our system seem intuitively very natural.
However, it quickly turns out that these additional rules make a w� of the form
(↵ ! �) interderivable with the corresponding w�s ¬(↵ ^ ¬�) and (¬↵ _ �). In
other words, at least when added to our core PL system, ‘!’ will behave like the
material conditional.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

196 PL proofs: conditionals

Exercises 22



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

23 PL proofs: theorems

A proof in our Fitch-style system has to start from something. But it doesn’t have to start
from a permanent premiss. A mere temporary supposition is good enough. This short
chapter illustrates this simple but important new idea.

23.1 Theorems

(a) Consider the following little proof. We start with no premisses, but make a tempo-
rary supposition for the sake of argument, and then continue to get proof A:

(1)
(2) (P ^ ¬P) (Supp)
(3) P (^E)
(4) ¬P (^E)
(5) ? (Abs )
(6) ¬(P ^ ¬P) (RAA 2–5)

Let’s adopt a standard bit of terminology:

A w� which is provable in our Fitch-style proof system from no premisses is said
to be a theorem of the system.

Then we have just shown that one formal instance of Aristotle’s Law of Non-Contradiction
is a theorem. And the proof strategy can be generalized: any w� of the form ¬(↵ ^ ¬↵)
can similarly be shown to be a theorem. Put any w� ↵ for ‘P’ throughout the proof, and
we will get a derivation of the corresponding ¬(↵ ^ ¬↵) from no premisses.

Is this some dubious sleight of hand, as we apparently pull propositions out of an
empty logical hat? No. In fact, on reflection, our result is exactly what we would hope
for! We can intuitively establish that any instance of Aristotle’s Law is true just by
reflecting on how the connectives appear in it. So the rules governing the connectives
ought to be enough by themselves to generate instances of the Law.

(b) We can also show that an instance of the Law of Excluded Middle like ‘(P _ ¬P)’
is a theorem.

How will the proof go? We can’t get the disjunctive conclusion using (_I), as we
plainly can’t get either ‘P’ or ‘¬P’ from no premisses. So strategically our only hope



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

198 PL proofs: theorems

is to suppose the opposite, ‘¬(P _ ¬P)’, and aim for a contradiction. But now note that
we can’t usefully apply our negation or disjunction rules to this supposition either: so it
seems that we will need to make another supposition in order sensibly to move on.

In fact, the simplest further supposition will do the trick. Here is how, B:

(1)
(2) ¬(P _ ¬P) (Supp)
(3) P (Supp)
(4) (P _ ¬P) (_I 3)
(5) ? (Abs 4, 2)
(6) ¬P (RAA 3–5)
(7) (P _ ¬P) (_I 6)
(8) ? (Abs 7, 2)
(9) ¬¬(P _ ¬P) (RAA 2–8)

(10) (P _ ¬P) (DN 9)

Check that you understand how the proof almost writes itself. Once again, the proof-idea
generalizes. Any w� of the form (↵ _ ¬↵) is a theorem.

(c) Now for a couple of examples involving conditionals. Firstly, we will show that
‘(P! (Q! (P ^ Q)))’ is a theorem – as you would expect, since it is in general a trivial
logical truth that if A is true, then if B is true as well, we will have A and B! So here’s a
proof, C:

(1)
(2) P (Supp)
(3) Q (Supp)
(4) (P ^ Q) (^I 2, 3)
(5) (Q! (P ^ Q)) (CP 3–4)
(6) (P! (Q! (P ^ Q))) (CP 2–5)

That was easy! But our next example is trickier. Take the w�

D (((P! Q)! P) ! P)

This is an instance of what is known as Peirce’s Law. If we interpret ‘!’ as the material
conditional then, as can be easily checked, it is a tautology.

In our proof system, then, we will evidently need a proof of the following shape:

((P! Q)! P) (Supp)
...

P

(((P! Q)! P)! P) (CP)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§23.2 Derived rules 199

But how do we fill in the dots? We will need to apply (MP) if we are to make any use of
the temporary supposition. But that means we will need to first derive the antecedent of
our supposition, i.e. ‘(P! Q)’. And how are we going to arrive at that?

Well, we can make another supposition ‘¬P’, and then derive ‘(P! Q)’ as in the
short proof for J in the last chapter. We then get the following (non-obvious!) proof:

(1)
(2) ((P! Q)! P) (Supp)
(3) ¬P (Supp)
(4) P (Supp)
(5) ? (Abs 4, 3)
(6) Q (EFQ 5)
(7) (P! Q) (CP 4, 6)
(8) P (MP 7, 2)
(9) ? (Abs 8, 3)

(10) ¬¬P (RAA 3–9)
(11) P (DN 101)
(12) (((P! Q)! P)! P) (CP 2–11)

It is interesting to note that this theorem of our system only involves the conditional;
yet we do need to use more than our two conditional rules in order to prove it. (We
have invoked (DN) at line (9): and it can be shown that we have to use (DN) or some
equivalent to derive instances of Peirce’s Law in our proof system.)

23.2 Derived rules

(a) Let’s take one more example of a theorem. Back in §14.1 we saw that
E ((P ^ Q) _ (¬P _ ¬Q))

is a PL logical truth. So we will want to be able to prove it from no premisses. We can
do so e.g. by filling in the following skeletal proof by cases:

...

((¬P _ ¬Q) _ ¬(¬P _ ¬Q)) (Excluded middle, prove as for B)
(¬P _ ¬Q) (Supp)
((P ^ Q) _ (¬P _ ¬Q)) (_I)
¬(¬P _ ¬Q) (Supp)
...

(P ^ Q) (See proof for G in §21.3)
((P ^ Q) _ (¬P _ ¬Q)) (_I)

((P ^ Q) _ (¬P _ ¬Q)) (_E)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

200 PL proofs: theorems

Filling in the details, that’s a twenty-five line proof. But we have kept things shorter by
allowing ourselves to appeal to two earlier proofs.

(b) Picking up that last point, here is a general observation. Suppose we want to cope
with increasingly messy PL proofs. Then:

(i) We can generalize from proofs that we have already produced, and build up
a library of derived rules of inference. For example, ‘From ¬(¬↵ _ ¬�) you
can infer (↵ ^ �)’; ‘From (↵ _ �) and ¬↵ you can infer �’; and so on.

(ii) We can then invoke these derived rules in order to speed up new proofs.
And that indeed is how some introductory logic texts proceed. But not us.

For once you have got the hang of how to use our formal logics here and later in the
book, and understand their role as ideal models of explicit rigour, then there is little
point in making it easier to produce more and more proofs inside our various systems.
As we’ve said before, understanding the basic motivations and guiding principles of our
logical systems is much more important.

23.3 Excluded middle and double negation

Having mentioned theorems and derived rules, we finish the chapter with a simple
observation for future use. Consider the following two rules of inference:

Double negation (DN): Given ¬¬↵, we can infer ↵.
Law of excluded middle (LEM): For any w� ↵, we can add (↵ _¬↵) at any step in
a proof.

Now, (DN) is built into our proof system as a basic rule. (LEM) isn’t. But we have just
seen how any instance of (↵ _ ¬↵) can already be proved at any point by using (DN)
(along with other rules). In other words, we could add (LEM) to our system as a derived
rule, and it would make no di�erence to what we can establish.

Suppose, however, that we hadn’t adopted the rule (DN), but had instead adopted the
rule (LEM) as basic alongside the other rules. Then, in this revised system, we have the
following short proof, by disjunctive syllogism:

(1) ¬¬P (Prem)
(2) (P _ ¬P) (LEM)
(3) P (Supp)
(4) P (Iter 3)
(5) ¬P (Supp)
(6) ? (Abs 5, 1)
(7) P (EFQ 6)
(8) P (_E 2, 3–4, 5–7)

And of course this proof idea generalizes too. In our revised system, we can still always
get from ¬¬↵ (whether as a premiss or as a w� in the middle of a proof) to ↵ by using
(LEM) and other background rules. So in our new system (DN) would be a derived rule.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§23.4 Summary 201

In short, taking the other rules – i.e. (Iter), (EFQ) and the pairs of introduction and
elimination rules – as fixed background, it doesn’t matter whether we adopt (DN) as

our additional negation-involving rule or adopt (LEM) instead. We will say something
about the significance of this observation at the end of the next chapter.

23.4 Summary

A theorem of our proof system is a w� which can be proved from no premisses at
all. Intuitively, theorems will be logical truths.
We saw that, given the other inferences, having the rule (DN) in place is equivalent
to have the rule (LEM) which allows us to invoke an instance of the law of excluded
middle at any point in a proof.

Exercises 23



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

24 PL proofs: metatheory

We have now worked through a range of proofs inside our Fitch-style natural deduction
system. In this chapter we mostly stand outside this system in order to note some
important results about it. In a word, we do some . . .

24.1 Metatheory

We have already remarked on some small metatheoretic results. For example, having
shown that we could argue from ‘(P ^ Q)’ to ‘(Q ^ P)’ in our initial proof system, we
then noted that – by replacing ‘P’ and ‘Q’ with ↵ and � throughout the little proof –
we can get a proof from (↵ ^ �) to (� ^ ↵). And the same proof idea works whether
(↵ ^ �) is a premiss or occurs midway through a proof. So we concluded that it would
be redundant to add to our system a further rule (^C) allowing us directly to swap the
order of conjuncts in a conjunction – see §20.1(d). This redundancy result is, of course,
not itself a theorem in the sense of a w� derived inside our PL proof system: it is a
metatheorem about our system.

Another metatheorem we have just met is the result that, keeping the other rules fixed,
we could replace the rule (DN) with the rule (LEM).

As we will see, however, the most basic metatheorems about our Fitch-style proof
system are as follows:

Our proof system is sound in the sense that, if we can get from (zero or more) PL

premisses to a PL conclusion by a derivation following our rules of inference, then
the conclusion really is tautologically entailed by the premisses. In other words, a
‘proof’ works as advertised, as a genuine proof.
Our proof system is also complete in the sense that we don’t need to add any
more inference rules for it to capture all tautological entailments. If a PL w� is
tautologically entailed by some PL premisses, then we can get to that conclusion
via a derivation from the premisses, using our proof system as it stands without
further augmentation.

Our Fitch-style system is certainly not the only sound and complete one for arguing in
PL languages with their truth-functional connectives. As we have stressed before, there
are other frameworks for proof-building on the market. Still, for brevity’s sake, we will
continue to refer to a derivation in our particular Fitch-style natural deduction system as
simply a ‘PL proof’.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.2 Putting everything together 203

24.2 Putting everything together

Before discussing soundness and completeness further, our first task must be to put to-
gether a specification for our proof system in a rather tidier way. We bring together in one
place the rules of inference that have been scattered through the last four chapters. And
then we will o�cially specify the ways in which we are allowed to chain inference steps
together to form proofs. (We put our logical house in order: but like other housekeeping,
it is unavoidably a bit tedious!)

(a) First, then, the rules of inference again. We start with the rule which allows us to
simply repeat ourselves when it is useful to do so:

(Iter) At any inference step, we can reiterate any available w�.

Next we have a rule governing the absurdity sign, plus a group of eight rules that
come in introduction/elimination pairs. (We explained at the end of §20.2(d) why we
can think of the negation rules as forming a pair of this kind. And we explained at
the end of §22.1(a) why we can also think of the conditional rules as forming another
introduction/elimination pair.) As usual, ↵, � and � are arbitrary w�s, and then:

(EFQ) Given ‘?’, we can infer any w� ↵.
(RAA) Given a finished subproof starting with the temporary supposition ↵ and

concluding ‘?’, we can infer ¬↵.
(Abs) Given ↵ and ¬↵, we can infer ‘?’.

(^I) Given ↵ and �, we can infer (↵ ^ �).
(^E) Given (↵ ^ �), we can infer ↵. Given (↵ ^ �), we can infer �.
(_I) Given ↵, we can infer (↵ _ �) for any �. Given �, we can infer (↵ _ �)

for any ↵.
(_E) Given (↵ _ �), a finished subproof from ↵ as supposition to � and also

a finished subproof from � as supposition to �, then we can infer �.
(CP) Given a finished subproof starting with the temporary supposition ↵ and

ending �, we can infer (↵ ! �).
(MP) Given ↵ and (↵ ! �), we can infer �.

Finally, we have the additional negation rule:

(DN) Given ¬¬↵, we can infer ↵.

We will return at the end of the chapter to consider the significance of the fact that
(DN) – or an equivalent like (LEM) – is an outlier, being independent of the basic
introduction/elimination pairs.

(b) Now we review how to put together inference steps in order to construct complete
PL proofs. We need to record some preliminary decisions (in order to pin down a few
details).



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

204 PL proofs: metatheory

(i) Line numbers on the left of a derivation, and commentary (in abbreviated
English) on the right, are helpful optional extras, but won’t count as part of the
proof itself. But what about the vertical lines marking columns of reasoning?
And what about the horizontal bars separating premisses and temporary sup-
positions from what follows? These do carry important information, so let’s
retain them. So when we talk about ‘columns’ we will take these as marked as
before by a vertical line, one for the whole ‘home’ column, and others lasting
for the duration of a subproof.

(ii) After we start a proof by giving some premisses, or start a subproof with a
temporary supposition, we must make at least one further step!

(iii) We can only finish a proof overall when we are in its home column, i.e. the
column which started with the original premisses, if any. (In other words, we
don’t get a properly completed proof if we stop in the middle of a subproof,
with some undischarged temporary supposition left dangling.)

(iv) We now repeat a point that we have made before. Consider the following:

(1) P (Prem)
(2) Q (Prem)
(3) R (Supp)
(4) (P ^ R) (^I 1, 3)
(5) (P ^ Q) (^I 1, 2)

Here we have a correctly formed subproof which, however, turns out to be an
irrelevant digression. We finish the subproof, but then make no later use of it
in reaching our final conclusion.

Now, we could require proofs to be written tidily and economically, so that
the only subproofs which appear along the way are ones which are actually used
as inputs to later rules of inference. And there are indeed natural deduction
systems which in e�ect rule out such redundant detours. However, we can
a�ord to be relaxed about this. After all, digressions may be ine�cient: but
we do not ordinarily regard them as fallacious. Hence we will allow subproofs
to be completed and then, in e�ect, abandoned. So our example here will
count as a correctly formed (even if digressive) proof. For us, being a proof is
one thing: being an elegantly minimal proof is something else!

With these (very minor) clarifications in place, we can now give an o�cial summary
of the principles for building PL proofs. We take it as understood that a proof in our
system is a snaking vertical line of w�s, arranged in marked columns and jumping at
most one column left or right at each step. Then:

A PL proof begins with zero or more w�s as premisses, entered at the top of the
home (left-most) column of the proof, followed by a horizontal bar.
Then at each further step we do one of the following (keeping going until we
eventually end the proof):



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.3 Vacuous discharge 205

(1) We remain in the current column, and apply one of the PL rules of
inference to add a w�. In applying a rule, the ‘given’ inputs to the rule
must be available, i.e. must not be inside an already finished subproof.

(2) We move one column to the right and add a w� (which becomes a new
temporary supposition) followed by a horizontal bar. This starts a new
subproof.

(3) We move one column to the left (only if we are not in the home column).
This ends the current subproof.

(4) We end the whole proof (only if we are in the home column).
These moves are subject to the following constraints:

(i) After stating the premisses or stating a temporary supposition, and draw-
ing a horizontal line, we must next do (1) or (2).

(ii) After (3), moving a column left, we must also next do (1) or (2).

The first constraint simply stops us putting down premisses or a temporary supposition
and doing nothing with them. The second constraint in e�ect stops us having proofs or
subproofs which end with no final w�.

Just check through some of our earlier examples, to convince yourself that they do
indeed conform to our now o�cial proof-building rules.

(c) One important remark. Look again at our rules of inference and at our rules for
putting them together in forming PL proofs. These rules are of course motivated by
thoughts about truth-preservation (we do want a sound proof system). But the rules
nowhere mention anything semantic; they just describe permissible symbol-shu�ing
moves. A computer can be programmed to check whether an array of symbols constitutes
a PL proof, simply by checking the syntactic form of the expressions involved. In short:

It is a purely syntactic matter whether an array of w�s and absurdity signs is put
together in such a way as to form a properly constructed PL proof.

24.3 Vacuous discharge

The guiding ideas behind our PL proof system are, we can agree, very natural and
attractive. But the devil is in the details. This section is about one bothersome detail.

(a) Consider, for example, the following derivation, A:

(1) P (Prem)
(2) ¬P (Prem)
(3) ¬Q (Supp)
(4) ? (Abs 1, 2)
(5) ¬¬Q (RAA 3–4)
(6) Q (DN 5)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

206 PL proofs: metatheory

Our (Abs) rule tells us that given ‘P’ and ‘¬P’ we can declare an absurdity. At line (4),
both ‘P’ and ‘¬P’ are available. So we can indeed correctly put down ‘?’ at that line.
Our (RAA) rule tells us that, given an available subproof starting with the temporary
supposition ‘¬Q’ and concluding ‘?’, we can discharge the supposition and infer ‘¬¬Q.
At line (5) just such a subproof is available, so (RAA) allows us to infer ‘¬¬Q’ at that
line. Hence, with a final (DN) step, we get another proof in our system warranting the
explosive inference ‘P,¬P 6 Q’.

You might, however, be rather suspicious about this derivation. For note that the
supposition ‘¬Q’ at line (3) is not actually used in deriving the absurdity at line (4).
But isn’t the idea behind a reductio proof that, if an assumption A leads to or generates

a contradiction, we can infer not-A? By contrast, our o�cial (RAA) rule allows what
is known by the unprepossessing name of ‘vacuous discharge’. Which means that we
are allowed to discharge the temporary supposition ↵ at the top of a subproof ending in
absurdity and infer ¬↵, even if ↵ is not involved in deriving the absurdity.

(b) Here is an even simpler derivation, B:

(1) Q (Prem)
(2) P (Supp)
(3) Q (Iter 1)
(4) (P! Q) (CP 2–3)

To infer a w� of the form (↵ ! �) by (CP), all we need is an available finished subproof
starting ↵ and ending �; and that’s what we have here at line (4).

Again, you might be suspicious. The supposition ‘P’ at line (2) in B is not actually used
in deriving (3), the final w� ‘Q’ of the subproof. But isn’t the idea behind a ‘conditional
proof’ that, if an assumption A leads to or generates a derived conclusion C, then we
are entitled to infer if A then C. By contrast, our o�cial (CP) rule also allows vacuous
discharge. Which means that we are allowed to discharge the temporary supposition ↵
at the top of a subproof ending in � and derive (↵ ! �), even if ↵ is not involved in

deriving �.

(c) So the question arises: is allowing vacuous discharge as in these cases a bug in our
proof system? Or is it an acceptable feature?

Concentrating on the simpler second example, it might be suggested that we should
make the conditional proof rule stricter, as follows:

(CP2) Given an available subproof starting with the temporary supposition ↵ and
ending with �, where ↵ is actually used in deriving �, then we can infer (↵ ! �).

Consider, however, the following proof, C:

(1) Q (Prem)
(2) P (Supp)
(3) (P ^ Q) (^I 2,1)
(4) Q (^E, 3)
(5) (P! Q) (CP2 2–4)



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.4 Generalizing proofs 207

Here the w� o�cially appealed to in deriving (4), namely (3), is itself derived from (2).
So we do still get a proof even with our revised rule (CP2).

In sum, a proof such as B using (CP) and vacuous discharge can only too easily be
massaged into a proof such as C using (CP2) without vacuous discharge.

(d) To avoid the revised rule (CP2) in e�ect collapsing back into our original rule
(CP), should we also try to block the sort of two-step dance involved at lines (3) and
(4) in C? Shall we ban using an introduction rule and then simply ‘undoing’ the result
by using the corresponding elimination rule? The trouble with this suggestion is that
such little detours strike us as redundant rather than wrong, so an outright ban would
initially seem to be hard to motivate. Moreover it turns out that, in general, the business
of ‘normalizing’ proofs to iron out all such detours is non-trivial.

But we will not try to tangle any further with complications like these. For the
headline news is that other standard natural deduction systems also permit vacuous
discharge when applying rules using temporary assumptions like (RAA), (_E) and
(CP), so this isn’t just a feature of our system. And this feature doesn’t enable us to prove
anything that we can’t prove otherwise, so it isn’t a vicious bug. (For example, as an
alternative to B, we can of course derive ‘(P! Q)’ from ‘Q’ by going via ‘(¬P _ Q)’ –
how?)

The path of least resistance, then, is simply to continue to allow vacuous discharge of
‘unused’ temporary suppositions as a special case.

24.4 Generalizing proofs

Now back to more important general issues. We pick up again an important point which
we have already frquently noted: PL proofs generalize.

Suppose we take an array of PL expressions which are interrelated by our rules of
inference so as to form a correctly formed proof. And suppose we systematically swap
out the atoms in this proof for other w�s (obeying the crucial rule – same atom, same
replacement throughout). Then we will get an array of new w�s.

But now note that nothing in our rules for PL proof-building gives a special role to
atomic w�s. So given that the old w�s in the old array were originally related to each
other in the right way to make them a proof, then – because the pattern of relationships
stays fixed – the new w�s in the new array will still be related in the right way to make
them a proof. In simpler words, any derivation built up the same way as our original
proof will also be a correctly formed proof.

As an aside, note that we can put the same point like this, highlighting a parallel with
§16.4 on generalizing tautological entailments. Take a correctly formed PL proof. Sys-
tematically replace its atoms with schematic variables (same atom, same replacement;
di�erent atoms, di�erent replacements). Call the result a proof schema. Then

Any substitution instance of a proof schema is also a proof.

We get a substitution instance, of course, by systematically replacing schematic variables
with w�s again.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

208 PL proofs: metatheory

24.5 ‘✏’ and ‘`’

(a) Recall some standard metalinguistic notation from §14.2 and §16.3. Assuming the
↵s and � are all w�s of some PL language, then:

We abbreviate the claim that the premisses ↵1, ↵2, . . . , ↵n tautologically entail the
conclusion � as follows: ↵1, ↵2, . . . , ↵n ✏ �.
We abbreviate the claim that � is a tautology as follows: ✏ �.

We now add some new, equally standard, notation:

We abbreviate the claim that there is a PL proof from the premisses ↵1, ↵2, . . . , ↵n
to the conclusion � as follows: ↵1, ↵2, . . . , ↵n ` �.
We abbreviate the claim that � is a PL theorem – i.e. the claim that � can be derived
from zero premisses – as follows: ` �.

The old double turnstile is the semantic turnstile, defined in terms of the semantic
property of being a truth-preserving inference. Correspondingly, the new single turnstile
is the syntactic turnstile, defined in terms of the syntactic property of being a well-
constructed PL proof. So the turnstiles have quite di�erent definitions.

(b) Still, despite their di�erent definitions, it is easy to see that the semantic and
syntactic turnstiles march in step in many particular cases. For example, we know from
§§14.2, 16.4 and 17.1 respectively that for any PL w�s ↵, �, �, we have the semantic
facts

(1) ✏ (↵ _ ¬↵),
(2) (↵ _ �),¬↵ ✏ �,
(3) ↵,¬↵ ✏ �.

And we now know from §§23.1, 21.4, and 20.6 respectively that these are exactly
matched by the syntactic facts that for any ↵, �, �,

(10) ` (↵ _ ¬↵),
(20) (↵ _ �),¬↵ ` �,
(30) ↵,¬↵ ` �.
Likewise, for example, we saw in Exercises 16 that the following two principles hold

for tautological entailment:
(4) If ↵ ✏ �, then ↵, � ✏ �,
(5) If ↵ ✏ � and � ✏ �, then ↵ ✏ �.

We have results about provability:
(40) If ↵ ` �, then ↵, � ` �,
(50) If ↵ ` � and � ` �, then ↵ ` �.

For the first, just note that adding an extra premiss to a correctly formed proof still gives
us a correctly formed proof (inserting an unused premiss doesn’t ruin things). For the



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.6 Soundness and completeness 209

second, we just take a derivation from ↵ to � and splice that together with a proof from
� to � to get a proof from ↵ from �.

Again in §18.7(c), we showed that
(6) ↵ ✏ � if and only if ✏ (↵ ! �).

Similarly, we have
(60) ↵ ` � if and only if ` (↵ ! �).

We can leave it as an exercise to check that last claim.

24.6 Soundness and completeness

(a) We won’t consider any more examples of how facts about provability match facts
about tautological entailment case by case, because we can show that the two sorts of
fact must always march in step.

As announced at the beginning of the chapter, we have the following two metatheo-
rems. First, and crucially,

Our PL proof system is sound: if ↵1, ↵2, . . . , ↵n ` �, then ↵1, ↵2, . . . , ↵n ✏ �.
As a special case, if ` � then ✏ �.

So our proof system is indeed trustworthy: a completed derivation of some w� from
given premisses is indeed always a proof, showing that the conclusion really does follow
from the premisses. And if a w� is a theorem, then it is indeed always logically true. (It
is only a very mild annoyance that ‘sound’ is used in elementary logic in two di�erent
ways – to say of a particular argument that it has true premisses and makes a valid
inference move, and to say of a formal proof system that its demonstrations are reliably
truth-preserving. This double use of the word is unlikely to cause any confusion.)

Secondly, we have the converse result:

Our PL proof system is complete: if ↵1, ↵2, . . . , ↵n ✏ �, then ↵1, ↵2, . . . , ↵n ` �.
As a special case, if ✏ � then ` �.

In other words, there are no ‘missing rules’ in our PL system. Given a tautologically valid
PL inference, we can always derive its conclusion from the premisses by a derivation in
the system as it stands.

(b) Let’s comment on these results. First, then, on the idea of soundness.
So far we have only introduced one family of formal languages, PL languages. And we

defined a suitable notion of validity-in-virtue-of-logical-structure for inferences framed
in a PL language, namely tautological validity. We have since introduced a Fitch-style
framework for proving conclusions from premisses in a PL language. The aim of this PL

proof system all along has been to enable us to establish that various inferences are truth
preserving without going through the palaver of a truth-table test. And certainly, we
have chosen proof-building rules that intuitively seem reliable. So it would be Very Bad



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

210 PL proofs: metatheory

News if our proof system can after all lead us astray and purport to validate inferences
that aren’t valid! Hence we do essentially require our PL proof system to be sound.

We are soon going to introduce another family of formal languages, QL languages, for
regimenting quantificational inferences. We will eventually define a suitable notion of
validity-in-virtue-of-logical-structure for inferences framed in a QL language, namely q-
validity. And we will extend our Fitch-style framework to enable us to prove conclusions
from premisses in a QL language. Again, we will want to be able to rely on the so-called
proofs – i.e. we will require every derivation of a conclusion from premisses to be
q-valid, making our QL proof system sound in the relevant sense.

And so it goes. Beyond the scope of this book, there are other families of logical
languages with di�erent types of semantics, and there will be correspondingly di�erent
definitions of validity-in-virtue-of-logical-structure for inferences in such languages. We
will usually want to design deductive systems for arguing formally in such languages.
There will be many options other than Fitch-style systems. But we will always require
our deductive systems to be sound, i.e. we require a ‘proved’ conclusion to validly follow
from the given premisses (in the appropriate sense of validity).

(c) Completeness, however, is another matter. Of course, it is great if we can find a nice
tidy formal proof-system for a given class of logical languages in which it is possible to
derive all the valid inferences. We can do this for tautologically valid inferences in PL

languages. We can, it turns out, also do this for q-valid inferences in QL languages.
But we can’t do it across the board. Roughly speaking, some logical languages are too

‘infinitary’ for the relevant notion of validity to be fully captured by a finitely specifiable
formal deductive system. However, that has to be a story for another time, in some more
advanced discussion. For the moment, we will just say: completeness in a proof system
is highly desirable, but is not always obtainable once we move beyond the elementary
logics which are our topic in this book.

(d) The main thing you should take away from this chapter is an understanding of the
claims that our PL proof system is sound and is complete, in the senses just explained.
You do not need to know how we establish these claims to be true.

In fact, a soundness proof is relatively easy. Say that a line on a proof is good if the
w� on that line is tautologically entailed by the premisses and suppositions available at
that line. Then we can show that a proof starts with a good line and that every proof-
building rule takes us from some previous good line(s) to another good line. So the
last line of a proof must be good too. But at the last line there can be no undischarged
suppositions. So this means that at the last line of a proof, the initial premisses must
indeed tautologically entail the concluding w�. To fill out this argument-sketch, we have
to check case-by-case that applications of the various proof-building rules preserves
goodness – which is tedious but not di�cult. We give details in an Appendix.

A completeness proof is harder. We give details of two interestingly di�erent lines of
argument in the Appendix.

But soundness and completeness proofs arguably sit exactly on the borderline between
introductory and more advanced logic. So to repeat, for our purposes in the rest of this
book, you can very safely skip the proofs.



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.7 Excluded middle again 211

24.7 Excluded middle again

We finish this chapter – and our discussion of propositional logic – by revisiting the
double negation rule and its equivalent, the law of excluded middle. As we will see,
these have a distinctive status that sets them apart from the other PL rules, an observation
which has some philosophical interest.

(a) Start from the PL proof system which we codified in §24.2. Now simply omit the
rule (DN). Call the resulting cut-down system IPL – the reason for the label will become
clear in a moment.

In the light of §23.3, adding the rule (DN) to IPL is equivalent to adding the rule (LEM)
which allows us to invoke an instance of the law of excluded middle at any stage in a
proof. And the point we want to emphasize now is that (DN) or (LEM) are substantive
additions to IPL, enabling us to derive conclusions that do not follow if we can only use
the rules of the cut-down system. To put it another way, (DN) – or equivalently, (LEM)
– is independent of the other rules of the original system PL.

(b) How do we prove the independence result? Here is a strategy. We find some new
way of interpreting IPL and its connectives, an interpretation on which the rules of our
cut-down deductive system would still be acceptable, but on which (DN) or (LEM)
would plainly not be acceptable. It then follows that buying the rules of IPL can’t commit
us to (DN) or (LEM).

Now, as we said when we first introduced it, the (DN) rule reflects the classical
understanding of negation as truth-value-flipping. So an interpretation on which (DN)
doesn’t hold will have to revise, in particular, the interpretation of negation. How can
we do that?

Suppose that we now think of a correct assertion not as one that corresponds to some
realm of facts (whatever that means) but as one which is informally provable or fully
justified or (for short) warranted. And suppose that we think of a correctness-preserving
inference as one that preserves warranted assertibility. Then here is a quite natural
four-part story about how to characterize the connectives in this new framework:

(i) (↵ ^ �) is correct, i.e. warranted, i� ↵ and � are both correct, i.e. are both
warranted.

(ii) (↵ _ �) is correct, i.e. warranted, i� at least one disjunct is correct, i.e. there
is a warrant for ↵ or a warrant for �.

(iii) A correct conditional (↵ ! �) must be one that, together with the warranted
assertion ↵, will enable us to derive another warranted assertion � by using
modus ponens. Hence (↵ ! �) is correct i� there is a way of converting a
warrant for ↵ into a warrant for �.

(iv) Finally, ¬↵ is correct i� we have a warrant for ruling out ↵ as leading to
something absurd.

We can still accept (EFQ) as essentially defining the absurdity constant – and then it
will follow that the absurd can’t be warrantedly assertible (or else everything would be
assertible).

With the connectives understood this way, the familiar introduction rules for the



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

212 PL proofs: metatheory

connectives will still be acceptable, i.e. they will be warrant-preserving (think through
why is this so). But – as we saw – the various elimination rules in e�ect just ‘undo’
the e�ects of the introduction rules: so they come along for free once we have the
introduction rules. Hence, thought of as a warrant-preserving system of rules, all our
IPL rules can remain in place.

However (DN) will not be acceptable in this framework. We might have a good reason
for ruling out being able to rule out ↵, so we can warrantedly assert¬¬↵. But that doesn’t
put us in a position to warrantedly assert ↵. We might just have to remain neutral.

Likewise (LEM) will not be acceptable. On the present understanding, (↵ _ ¬↵)
would be correct, i.e. warranted, just if there is a warrant for ↵ or a warrant for ¬↵, i.e.
a warrant for ruling out ↵. But again, why should there always be a way of justifiably
deciding a conjecture ↵ in the relevant area of enquiry one way or the other? Some
things may be beyond our ken.

Hence, if we are thinking of our proof system as a framework for arguments preserving
warranted assertability, we shouldn’t endorse (DN) or (LEM).

(Be very careful here! You need to sharply distinguish that last claim about not

endorsing (LEM) from the quite di�erent claim that we should actually accept some
instances of the ‘opposite’ schema ¬(↵ _ ¬↵). That claim is quite wrong. In fact, IPL

itself refutes any instance of this schema. In other words, IPL proves any instance of
¬¬(↵ _ ¬↵); just generalize the first nine lines of the proof B in §23.1.)

(c) So now we see the significance of the fact that the (DN) rule is an outlier, not one
of the introduction/elimination rules for the connectives. Its special status leaves room
for an interpretation on which the remaining rules – the rules of IPL – hold good, but
(DN) doesn’t. Which is what we wanted to show.

True, our version of the argument might seem a bit rough-and-ready; after all, the
notions of warrant or informal proof are not ideally clear. But let’s not fuss about that.
For we can in fact develop a rigorous story inspired by these notions which gives us an
entirely uncontroversial technical proof that (DN) and its equivalents are, as claimed,
independent of the other rules of PL.

Things do get controversial, when it is claimed that in some particular domain of
enquiry (DN) and (LEM) really don’t apply, because in this domain there can indeed
be no more to correctness than warrant or informal provability. For example, so-called
intuitionists hold that mathematics is a case in point. Mathematical truth, they say,
doesn’t consist in correspondence with facts about objects laid out in some Platonic
heaven (after all, there are familiar worries: what kind of objects could these ideal
mathematical entities be? how could we possibly know about them?). Rather, the story
goes, being mathematically correct is a matter of being assertible on the basis of a proof
– meaning not a proof in this or that formal system but any proof satisfying informal
mathematical standards.

This view is radical and highly contentious – it involves having to reject swathes
of standard mathematics, because it changes our logic. For an intuitionist, the appro-
priate propositional logic for arguing with the connectives is not the full classical

two-valued logic PL where (LEM) holds, but rather the cut-down intuitionist logic we
have already labelled IPL because this is the right logic for correctness-as-informal-



©Peter Smith, April 1, 2019 Comments to ps218@cam.ac.uk

§24.8 Summary 213

provability. (Relatedly, the intuitionist can only accept a cut-down version of standard
quantificational logic too.)

In this introductory book, we obviously can’t even begin to discuss those intriguing
but ba�ing issues about the nature of truth and provability in mathematics. So we
certainly can’t tackle the vexed question of whether there really are domains where we
can’t apply the full classical PL apparatus (even when we continue to set aside issues of
vagueness). Here, we just have to follow absolutely standard practice and concentrate
on the classical logic which includes the law of excluded middle, reflecting the classical
understanding of negation as truth-value-flipping. For this is the logic which is routinely
deployed by mathematicians along with the rest of us.

(d) We should perhaps add that non-standard views about mathematics are not the only
reason for finding IPL of special interest. But we can’t now explore any further afield.
Instead, we must at long last press on to consider standard, classical, quantificational

logic.

24.8 Summary

We have reviewed our Fitch-style proof system, restating the inference rules, and
now specifying the permissible ways of assembling inferences together into struc-
tured proofs.
In fixing the details of our system, various choices have had to be made. For
example, we allow ‘stray’ unused subproofs to clutter up a proof. We noted in
particular that we allow ‘vacuous discharge’.
We defined the syntactic turnstile ‘`’ (indicating provability) to go alongside the
semantic turnstile ‘✏’ (indicating entailment). We noted particular cases where
properties of ‘`’ match properties of ‘✏’.
In fact, our PL proof system is sound and complete. A conclusion derived from
some premisses by a PL proof is indeed tautologically entailed by those premisses.
And conversely, a conclusion tautologically entailed by some premisses can be
derived from them by a PL proof.
We outlined proofs of soundness and completeness – full details are found in an
Appendix on ‘Soundness and completeness for PL proofs’.

Exercises 24


